sponsorblock-ml / app.py
Joshua Lochner
Use partial functions to allow pickling of prediction functions
23a1215
raw
history blame
6.81 kB
from functools import partial
from math import ceil, floor
import streamlit.components.v1 as components
from transformers import (
AutoModelForSeq2SeqLM,
AutoTokenizer,
)
import streamlit as st
import sys
import os
import json
from urllib.parse import quote
from huggingface_hub import hf_hub_download
# Allow direct execution
sys.path.insert(0, os.path.join(os.path.dirname(os.path.abspath(__file__)), 'src')) # noqa
from predict import SegmentationArguments, ClassifierArguments, predict as pred, seconds_to_time # noqa
from evaluate import EvaluationArguments
from shared import device, CATGEGORY_OPTIONS
st.set_page_config(
page_title='SponsorBlock ML',
page_icon='🤖',
# layout='wide',
# initial_sidebar_state="expanded",
menu_items={
'Get Help': 'https://github.com/xenova/sponsorblock-ml',
'Report a bug': 'https://github.com/xenova/sponsorblock-ml/issues/new/choose',
# 'About': "# This is a header. This is an *extremely* cool app!"
}
)
# https://github.com/google-research/text-to-text-transfer-transformer#released-model-checkpoints
# https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#experimental-t5-pre-trained-model-checkpoints
# https://huggingface.co/docs/transformers/model_doc/t5
# https://huggingface.co/docs/transformers/model_doc/t5v1.1
# Faster caching system for predictions (No need to hash)
@st.cache(persist=True, allow_output_mutation=True)
def persistdata():
return {}
prediction_cache = persistdata()
MODELS = {
'Small (77M)': {
'pretrained': 'google/t5-v1_1-small',
'repo_id': 'Xenova/sponsorblock-small',
},
'Base v1 (220M)': {
'pretrained': 't5-base',
'repo_id': 'EColi/sponsorblock-base-v1',
},
'Base v1.1 (250M)': {
'pretrained': 'google/t5-v1_1-base',
'repo_id': 'Xenova/sponsorblock-base',
}
}
# Create per-model cache
for m in MODELS:
if m not in prediction_cache:
prediction_cache[m] = {}
CLASSIFIER_PATH = 'Xenova/sponsorblock-classifier'
@st.cache(persist=True, allow_output_mutation=True)
def download_classifier(classifier_args):
# Save classifier and vectorizer
hf_hub_download(repo_id=CLASSIFIER_PATH,
filename=classifier_args.classifier_file,
cache_dir=classifier_args.classifier_dir,
force_filename=classifier_args.classifier_file,
)
hf_hub_download(repo_id=CLASSIFIER_PATH,
filename=classifier_args.vectorizer_file,
cache_dir=classifier_args.classifier_dir,
force_filename=classifier_args.vectorizer_file,
)
return True
def predict_function(model_id, model, tokenizer, segmentation_args, classifier_args, video_id):
if video_id not in prediction_cache[model_id]:
prediction_cache[model_id][video_id] = pred(
video_id, model, tokenizer,
segmentation_args=segmentation_args,
classifier_args=classifier_args
)
return prediction_cache[model_id][video_id]
@st.cache(persist=True, allow_output_mutation=True)
def load_predict(model_id):
model_info = MODELS[model_id]
# Use default segmentation and classification arguments
evaluation_args = EvaluationArguments(model_path=model_info['repo_id'])
segmentation_args = SegmentationArguments()
classifier_args = ClassifierArguments()
model = AutoModelForSeq2SeqLM.from_pretrained(evaluation_args.model_path)
model.to(device())
tokenizer = AutoTokenizer.from_pretrained(evaluation_args.model_path)
download_classifier(classifier_args)
return partial(predict_function, model_id, model, tokenizer, segmentation_args, classifier_args)
def main():
# Display heading and subheading
st.write('# SponsorBlock ML')
st.write('##### Automatically detect in-video YouTube sponsorships, self/unpaid promotions, and interaction reminders.')
model_id = st.selectbox('Select model', MODELS.keys(), index=0)
# Load prediction function
predict = load_predict(model_id)
video_id = st.text_input('Video ID:') # , placeholder='e.g., axtQvkSpoto'
categories = st.multiselect('Categories:',
CATGEGORY_OPTIONS.keys(),
CATGEGORY_OPTIONS.keys(),
format_func=CATGEGORY_OPTIONS.get
)
# Hide segments with a confidence lower than
confidence_threshold = st.slider(
'Confidence Threshold (%):', min_value=0, max_value=100)
video_id_length = len(video_id)
if video_id_length == 0:
return
elif video_id_length != 11:
st.exception(ValueError('Invalid YouTube ID'))
return
with st.spinner('Running model...'):
predictions = predict(video_id)
if len(predictions) == 0:
st.success('No segments found!')
return
submit_segments = []
for index, prediction in enumerate(predictions, start=1):
if prediction['category'] not in categories:
continue # Skip
confidence = prediction['probability'] * 100
if confidence < confidence_threshold:
continue
submit_segments.append({
'segment': [prediction['start'], prediction['end']],
'category': prediction['category'].lower(),
'actionType': 'skip'
})
start_time = seconds_to_time(prediction['start'])
end_time = seconds_to_time(prediction['end'])
with st.expander(
f"[{prediction['category']}] Prediction #{index} ({start_time} \u2192 {end_time})"
):
url = f"https://www.youtube-nocookie.com/embed/{video_id}?&start={floor(prediction['start'])}&end={ceil(prediction['end'])}"
# autoplay=1controls=0&&modestbranding=1&fs=0
# , width=None, height=None, scrolling=False
components.iframe(url, width=670, height=376)
text = ' '.join(w['text'] for w in prediction['words'])
st.write(f"**Times:** {start_time} \u2192 {end_time}")
st.write(
f"**Category:** {CATGEGORY_OPTIONS[prediction['category']]}")
st.write(f"**Confidence:** {confidence:.2f}%")
st.write(f'**Text:** "{text}"')
json_data = quote(json.dumps(submit_segments))
link = f'[Submit Segments](https://www.youtube.com/watch?v={video_id}#segments={json_data})'
st.markdown(link, unsafe_allow_html=True)
wiki_link = '[Review generated segments before submitting!](https://wiki.sponsor.ajay.app/w/Automating_Submissions)'
st.markdown(wiki_link, unsafe_allow_html=True)
if __name__ == '__main__':
main()