Spaces:
Running
Running
Joshua Lochner
commited on
Commit
•
a294fb2
1
Parent(s):
31d605f
Improve output of evaluation script
Browse files- src/evaluate.py +72 -28
src/evaluate.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
from utils import jaccard
|
2 |
from datasets import load_dataset
|
3 |
from transformers import (
|
@@ -5,10 +6,10 @@ from transformers import (
|
|
5 |
AutoTokenizer,
|
6 |
HfArgumentParser
|
7 |
)
|
8 |
-
from preprocess import DatasetArguments,
|
9 |
from shared import device, GeneralArguments
|
10 |
from predict import ClassifierArguments, predict, TrainingOutputArguments
|
11 |
-
from segment import word_start, word_end, SegmentationArguments, add_labels_to_words
|
12 |
import pandas as pd
|
13 |
from dataclasses import dataclass, field
|
14 |
from typing import Optional
|
@@ -16,6 +17,7 @@ from tqdm import tqdm
|
|
16 |
import json
|
17 |
import os
|
18 |
import random
|
|
|
19 |
|
20 |
|
21 |
@dataclass
|
@@ -29,11 +31,8 @@ class EvaluationArguments(TrainingOutputArguments):
|
|
29 |
'help': 'The number of videos to test on'
|
30 |
}
|
31 |
)
|
32 |
-
|
33 |
-
|
34 |
-
dataset: Optional[str] = DatasetArguments.__dataclass_fields__[
|
35 |
-
'validation_file']
|
36 |
-
|
37 |
output_file: Optional[str] = field(
|
38 |
default='metrics.csv',
|
39 |
metadata={
|
@@ -98,13 +97,13 @@ def calculate_metrics(labelled_words, predictions):
|
|
98 |
|
99 |
if predicted_sponsor:
|
100 |
# total_positive_time += duration
|
101 |
-
if word
|
102 |
metrics['true_positive'] += duration
|
103 |
else:
|
104 |
metrics['false_positive'] += duration
|
105 |
else:
|
106 |
# total_negative_time += duration
|
107 |
-
if word
|
108 |
metrics['false_negative'] += duration
|
109 |
else:
|
110 |
metrics['true_negative'] += duration
|
@@ -141,34 +140,38 @@ def calculate_metrics(labelled_words, predictions):
|
|
141 |
def main():
|
142 |
hf_parser = HfArgumentParser((
|
143 |
EvaluationArguments,
|
144 |
-
|
145 |
SegmentationArguments,
|
146 |
ClassifierArguments,
|
147 |
GeneralArguments
|
148 |
))
|
149 |
|
150 |
-
evaluation_args,
|
151 |
-
|
152 |
-
model = AutoModelForSeq2SeqLM.from_pretrained(evaluation_args.model_path)
|
153 |
-
model.to(device())
|
154 |
-
|
155 |
-
tokenizer = AutoTokenizer.from_pretrained(evaluation_args.model_path)
|
156 |
|
157 |
-
|
158 |
-
evaluation_args.data_dir, evaluation_args.dataset))['train']
|
159 |
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
video_ids = video_ids[:evaluation_args.max_videos]
|
165 |
|
166 |
# Load labelled data:
|
167 |
final_path = os.path.join(
|
168 |
-
|
169 |
|
170 |
with open(final_path) as fp:
|
171 |
final_data = json.load(fp)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
|
173 |
total_accuracy = 0
|
174 |
total_precision = 0
|
@@ -179,9 +182,12 @@ def main():
|
|
179 |
|
180 |
try:
|
181 |
with tqdm(video_ids) as progress:
|
182 |
-
for video_id in progress:
|
|
|
183 |
progress.set_description(f'Processing {video_id}')
|
184 |
sponsor_segments = final_data.get(video_id, [])
|
|
|
|
|
185 |
|
186 |
words = get_words(video_id)
|
187 |
if not words:
|
@@ -211,9 +217,47 @@ def main():
|
|
211 |
|
212 |
labelled_predicted_segments = attach_predictions_to_sponsor_segments(
|
213 |
predictions, sponsor_segments)
|
214 |
-
|
215 |
-
|
216 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
217 |
|
218 |
except KeyboardInterrupt:
|
219 |
pass
|
|
|
1 |
+
from model import get_model_tokenizer
|
2 |
from utils import jaccard
|
3 |
from datasets import load_dataset
|
4 |
from transformers import (
|
|
|
6 |
AutoTokenizer,
|
7 |
HfArgumentParser
|
8 |
)
|
9 |
+
from preprocess import DatasetArguments, get_words
|
10 |
from shared import device, GeneralArguments
|
11 |
from predict import ClassifierArguments, predict, TrainingOutputArguments
|
12 |
+
from segment import extract_segment, word_start, word_end, SegmentationArguments, add_labels_to_words
|
13 |
import pandas as pd
|
14 |
from dataclasses import dataclass, field
|
15 |
from typing import Optional
|
|
|
17 |
import json
|
18 |
import os
|
19 |
import random
|
20 |
+
from shared import seconds_to_time
|
21 |
|
22 |
|
23 |
@dataclass
|
|
|
31 |
'help': 'The number of videos to test on'
|
32 |
}
|
33 |
)
|
34 |
+
start_index: int = field(default=None, metadata={
|
35 |
+
'help': 'Video to start the evaluation at.'})
|
|
|
|
|
|
|
36 |
output_file: Optional[str] = field(
|
37 |
default='metrics.csv',
|
38 |
metadata={
|
|
|
97 |
|
98 |
if predicted_sponsor:
|
99 |
# total_positive_time += duration
|
100 |
+
if word.get('category') is not None: # Is actual sponsor
|
101 |
metrics['true_positive'] += duration
|
102 |
else:
|
103 |
metrics['false_positive'] += duration
|
104 |
else:
|
105 |
# total_negative_time += duration
|
106 |
+
if word.get('category') is not None: # Is actual sponsor
|
107 |
metrics['false_negative'] += duration
|
108 |
else:
|
109 |
metrics['true_negative'] += duration
|
|
|
140 |
def main():
|
141 |
hf_parser = HfArgumentParser((
|
142 |
EvaluationArguments,
|
143 |
+
DatasetArguments,
|
144 |
SegmentationArguments,
|
145 |
ClassifierArguments,
|
146 |
GeneralArguments
|
147 |
))
|
148 |
|
149 |
+
evaluation_args, dataset_args, segmentation_args, classifier_args, _ = hf_parser.parse_args_into_dataclasses()
|
|
|
|
|
|
|
|
|
|
|
150 |
|
151 |
+
model, tokenizer = get_model_tokenizer(evaluation_args.model_path)
|
|
|
152 |
|
153 |
+
# # TODO find better way of evaluating videos not trained on
|
154 |
+
# dataset = load_dataset('json', data_files=os.path.join(
|
155 |
+
# dataset_args.data_dir, dataset_args.validation_file))['train']
|
156 |
+
# video_ids = [row['video_id'] for row in dataset]
|
|
|
157 |
|
158 |
# Load labelled data:
|
159 |
final_path = os.path.join(
|
160 |
+
dataset_args.data_dir, dataset_args.processed_file)
|
161 |
|
162 |
with open(final_path) as fp:
|
163 |
final_data = json.load(fp)
|
164 |
+
video_ids = list(final_data.keys())
|
165 |
+
|
166 |
+
random.shuffle(video_ids)
|
167 |
+
|
168 |
+
if evaluation_args.start_index is not None:
|
169 |
+
video_ids = video_ids[evaluation_args.start_index:]
|
170 |
+
|
171 |
+
if evaluation_args.max_videos is not None:
|
172 |
+
video_ids = video_ids[:evaluation_args.max_videos]
|
173 |
+
|
174 |
+
# TODO option to choose categories
|
175 |
|
176 |
total_accuracy = 0
|
177 |
total_precision = 0
|
|
|
182 |
|
183 |
try:
|
184 |
with tqdm(video_ids) as progress:
|
185 |
+
for video_index, video_id in enumerate(progress):
|
186 |
+
|
187 |
progress.set_description(f'Processing {video_id}')
|
188 |
sponsor_segments = final_data.get(video_id, [])
|
189 |
+
if not sponsor_segments:
|
190 |
+
continue # Ignore empty
|
191 |
|
192 |
words = get_words(video_id)
|
193 |
if not words:
|
|
|
217 |
|
218 |
labelled_predicted_segments = attach_predictions_to_sponsor_segments(
|
219 |
predictions, sponsor_segments)
|
220 |
+
|
221 |
+
# Identify possible issues:
|
222 |
+
missed_segments = [
|
223 |
+
prediction for prediction in predictions if prediction['best_sponsorship'] is None]
|
224 |
+
incorrect_segments = [
|
225 |
+
seg for seg in labelled_predicted_segments if seg['best_prediction'] is None]
|
226 |
+
|
227 |
+
if missed_segments or incorrect_segments:
|
228 |
+
print('Issues identified for',
|
229 |
+
video_id, f'(#{video_index})')
|
230 |
+
# Potentially missed segments (model predicted, but not in database)
|
231 |
+
if missed_segments:
|
232 |
+
print(' - Missed segments:')
|
233 |
+
for i, missed_segment in enumerate(missed_segments, start=1):
|
234 |
+
print(f'\t#{i}:', seconds_to_time(
|
235 |
+
missed_segment['start']), '-->', seconds_to_time(missed_segment['end']))
|
236 |
+
print('\t\tText: "', ' '.join(
|
237 |
+
[w['text'] for w in missed_segment['words']]), '"', sep='')
|
238 |
+
print('\t\tCategory:',
|
239 |
+
missed_segment.get('category'))
|
240 |
+
print('\t\tProbability:',
|
241 |
+
missed_segment.get('probability'))
|
242 |
+
|
243 |
+
# Potentially incorrect segments (model didn't predict, but in database)
|
244 |
+
if incorrect_segments:
|
245 |
+
print(' - Incorrect segments:')
|
246 |
+
for i, incorrect_segment in enumerate(incorrect_segments, start=1):
|
247 |
+
print(f'\t#{i}:', seconds_to_time(
|
248 |
+
incorrect_segment['start']), '-->', seconds_to_time(incorrect_segment['end']))
|
249 |
+
|
250 |
+
seg_words = extract_segment(
|
251 |
+
words, incorrect_segment['start'], incorrect_segment['end'])
|
252 |
+
print('\t\tText: "', ' '.join(
|
253 |
+
[w['text'] for w in seg_words]), '"', sep='')
|
254 |
+
print('\t\tUUID:', incorrect_segment['uuid'])
|
255 |
+
print('\t\tCategory:',
|
256 |
+
incorrect_segment['category'])
|
257 |
+
print('\t\tVotes:', incorrect_segment['votes'])
|
258 |
+
print('\t\tViews:', incorrect_segment['views'])
|
259 |
+
print('\t\tLocked:', incorrect_segment['locked'])
|
260 |
+
print()
|
261 |
|
262 |
except KeyboardInterrupt:
|
263 |
pass
|