Spaces:
Sleeping
Sleeping
xicocdi
commited on
Commit
•
2182f80
1
Parent(s):
a942057
final push
Browse files- Embedding_Model_Eval.ipynb +206 -0
- app.py +1 -5
Embedding_Model_Eval.ipynb
CHANGED
@@ -576,6 +576,212 @@
|
|
576 |
"multiquery_ft_embedding_metrics_df.to_csv(\"multiquery_ft_embedding_metrics.csv\", index=False)"
|
577 |
]
|
578 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
579 |
{
|
580 |
"cell_type": "code",
|
581 |
"execution_count": 41,
|
|
|
576 |
"multiquery_ft_embedding_metrics_df.to_csv(\"multiquery_ft_embedding_metrics.csv\", index=False)"
|
577 |
]
|
578 |
},
|
579 |
+
{
|
580 |
+
"cell_type": "code",
|
581 |
+
"execution_count": 1,
|
582 |
+
"metadata": {},
|
583 |
+
"outputs": [],
|
584 |
+
"source": [
|
585 |
+
"import pandas as pd"
|
586 |
+
]
|
587 |
+
},
|
588 |
+
{
|
589 |
+
"cell_type": "code",
|
590 |
+
"execution_count": 2,
|
591 |
+
"metadata": {},
|
592 |
+
"outputs": [],
|
593 |
+
"source": [
|
594 |
+
"multiquery_metrics_df = pd.read_csv(\"multiquery_metrics.csv\")"
|
595 |
+
]
|
596 |
+
},
|
597 |
+
{
|
598 |
+
"cell_type": "code",
|
599 |
+
"execution_count": 3,
|
600 |
+
"metadata": {},
|
601 |
+
"outputs": [],
|
602 |
+
"source": [
|
603 |
+
"multiquery_ft_embedding_metrics_df = pd.read_csv(\"multiquery_ft_embedding_metrics.csv\")"
|
604 |
+
]
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"cell_type": "code",
|
608 |
+
"execution_count": 5,
|
609 |
+
"metadata": {},
|
610 |
+
"outputs": [
|
611 |
+
{
|
612 |
+
"data": {
|
613 |
+
"text/html": [
|
614 |
+
"<div>\n",
|
615 |
+
"<style scoped>\n",
|
616 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
617 |
+
" vertical-align: middle;\n",
|
618 |
+
" }\n",
|
619 |
+
"\n",
|
620 |
+
" .dataframe tbody tr th {\n",
|
621 |
+
" vertical-align: top;\n",
|
622 |
+
" }\n",
|
623 |
+
"\n",
|
624 |
+
" .dataframe thead th {\n",
|
625 |
+
" text-align: right;\n",
|
626 |
+
" }\n",
|
627 |
+
"</style>\n",
|
628 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
629 |
+
" <thead>\n",
|
630 |
+
" <tr style=\"text-align: right;\">\n",
|
631 |
+
" <th></th>\n",
|
632 |
+
" <th>Metric</th>\n",
|
633 |
+
" <th>MultiQuery</th>\n",
|
634 |
+
" </tr>\n",
|
635 |
+
" </thead>\n",
|
636 |
+
" <tbody>\n",
|
637 |
+
" <tr>\n",
|
638 |
+
" <th>0</th>\n",
|
639 |
+
" <td>faithfulness</td>\n",
|
640 |
+
" <td>0.896804</td>\n",
|
641 |
+
" </tr>\n",
|
642 |
+
" <tr>\n",
|
643 |
+
" <th>1</th>\n",
|
644 |
+
" <td>answer_relevancy</td>\n",
|
645 |
+
" <td>0.953211</td>\n",
|
646 |
+
" </tr>\n",
|
647 |
+
" <tr>\n",
|
648 |
+
" <th>2</th>\n",
|
649 |
+
" <td>context_recall</td>\n",
|
650 |
+
" <td>0.890625</td>\n",
|
651 |
+
" </tr>\n",
|
652 |
+
" <tr>\n",
|
653 |
+
" <th>3</th>\n",
|
654 |
+
" <td>context_precision</td>\n",
|
655 |
+
" <td>0.920732</td>\n",
|
656 |
+
" </tr>\n",
|
657 |
+
" <tr>\n",
|
658 |
+
" <th>4</th>\n",
|
659 |
+
" <td>answer_correctness</td>\n",
|
660 |
+
" <td>0.690058</td>\n",
|
661 |
+
" </tr>\n",
|
662 |
+
" </tbody>\n",
|
663 |
+
"</table>\n",
|
664 |
+
"</div>"
|
665 |
+
],
|
666 |
+
"text/plain": [
|
667 |
+
" Metric MultiQuery\n",
|
668 |
+
"0 faithfulness 0.896804\n",
|
669 |
+
"1 answer_relevancy 0.953211\n",
|
670 |
+
"2 context_recall 0.890625\n",
|
671 |
+
"3 context_precision 0.920732\n",
|
672 |
+
"4 answer_correctness 0.690058"
|
673 |
+
]
|
674 |
+
},
|
675 |
+
"execution_count": 5,
|
676 |
+
"metadata": {},
|
677 |
+
"output_type": "execute_result"
|
678 |
+
}
|
679 |
+
],
|
680 |
+
"source": [
|
681 |
+
"multiquery_metrics_df"
|
682 |
+
]
|
683 |
+
},
|
684 |
+
{
|
685 |
+
"cell_type": "code",
|
686 |
+
"execution_count": 6,
|
687 |
+
"metadata": {},
|
688 |
+
"outputs": [
|
689 |
+
{
|
690 |
+
"data": {
|
691 |
+
"text/html": [
|
692 |
+
"<div>\n",
|
693 |
+
"<style scoped>\n",
|
694 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
695 |
+
" vertical-align: middle;\n",
|
696 |
+
" }\n",
|
697 |
+
"\n",
|
698 |
+
" .dataframe tbody tr th {\n",
|
699 |
+
" vertical-align: top;\n",
|
700 |
+
" }\n",
|
701 |
+
"\n",
|
702 |
+
" .dataframe thead th {\n",
|
703 |
+
" text-align: right;\n",
|
704 |
+
" }\n",
|
705 |
+
"</style>\n",
|
706 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
707 |
+
" <thead>\n",
|
708 |
+
" <tr style=\"text-align: right;\">\n",
|
709 |
+
" <th></th>\n",
|
710 |
+
" <th>Metric</th>\n",
|
711 |
+
" <th>MultiQuery</th>\n",
|
712 |
+
" <th>Fine-Tune Embedding</th>\n",
|
713 |
+
" <th>Baseline -> Fine-Tune Embedding</th>\n",
|
714 |
+
" </tr>\n",
|
715 |
+
" </thead>\n",
|
716 |
+
" <tbody>\n",
|
717 |
+
" <tr>\n",
|
718 |
+
" <th>0</th>\n",
|
719 |
+
" <td>faithfulness</td>\n",
|
720 |
+
" <td>0.896804</td>\n",
|
721 |
+
" <td>0.868351</td>\n",
|
722 |
+
" <td>-0.028452</td>\n",
|
723 |
+
" </tr>\n",
|
724 |
+
" <tr>\n",
|
725 |
+
" <th>1</th>\n",
|
726 |
+
" <td>answer_relevancy</td>\n",
|
727 |
+
" <td>0.953211</td>\n",
|
728 |
+
" <td>0.955777</td>\n",
|
729 |
+
" <td>0.002566</td>\n",
|
730 |
+
" </tr>\n",
|
731 |
+
" <tr>\n",
|
732 |
+
" <th>2</th>\n",
|
733 |
+
" <td>context_recall</td>\n",
|
734 |
+
" <td>0.890625</td>\n",
|
735 |
+
" <td>0.944444</td>\n",
|
736 |
+
" <td>0.053819</td>\n",
|
737 |
+
" </tr>\n",
|
738 |
+
" <tr>\n",
|
739 |
+
" <th>3</th>\n",
|
740 |
+
" <td>context_precision</td>\n",
|
741 |
+
" <td>0.920732</td>\n",
|
742 |
+
" <td>0.953668</td>\n",
|
743 |
+
" <td>0.032936</td>\n",
|
744 |
+
" </tr>\n",
|
745 |
+
" <tr>\n",
|
746 |
+
" <th>4</th>\n",
|
747 |
+
" <td>answer_correctness</td>\n",
|
748 |
+
" <td>0.690058</td>\n",
|
749 |
+
" <td>0.603407</td>\n",
|
750 |
+
" <td>-0.086651</td>\n",
|
751 |
+
" </tr>\n",
|
752 |
+
" </tbody>\n",
|
753 |
+
"</table>\n",
|
754 |
+
"</div>"
|
755 |
+
],
|
756 |
+
"text/plain": [
|
757 |
+
" Metric MultiQuery Fine-Tune Embedding \\\n",
|
758 |
+
"0 faithfulness 0.896804 0.868351 \n",
|
759 |
+
"1 answer_relevancy 0.953211 0.955777 \n",
|
760 |
+
"2 context_recall 0.890625 0.944444 \n",
|
761 |
+
"3 context_precision 0.920732 0.953668 \n",
|
762 |
+
"4 answer_correctness 0.690058 0.603407 \n",
|
763 |
+
"\n",
|
764 |
+
" Baseline -> Fine-Tune Embedding \n",
|
765 |
+
"0 -0.028452 \n",
|
766 |
+
"1 0.002566 \n",
|
767 |
+
"2 0.053819 \n",
|
768 |
+
"3 0.032936 \n",
|
769 |
+
"4 -0.086651 "
|
770 |
+
]
|
771 |
+
},
|
772 |
+
"execution_count": 6,
|
773 |
+
"metadata": {},
|
774 |
+
"output_type": "execute_result"
|
775 |
+
}
|
776 |
+
],
|
777 |
+
"source": [
|
778 |
+
"df_baseline_ft_embeddings = pd.merge(multiquery_metrics_df, multiquery_ft_embedding_metrics_df, on='Metric')\n",
|
779 |
+
"\n",
|
780 |
+
"df_baseline_ft_embeddings['Baseline -> Fine-Tune Embedding'] = df_baseline_ft_embeddings['Fine-Tune Embedding'] - df_baseline_ft_embeddings['MultiQuery']\n",
|
781 |
+
"\n",
|
782 |
+
"df_baseline_ft_embeddings"
|
783 |
+
]
|
784 |
+
},
|
785 |
{
|
786 |
"cell_type": "code",
|
787 |
"execution_count": 41,
|
app.py
CHANGED
@@ -76,13 +76,9 @@ retriever = vectorstore.as_retriever(
|
|
76 |
llm = ChatOpenAI(
|
77 |
model="gpt-4o-mini",
|
78 |
temperature=0,
|
79 |
-
streaming=True,
|
80 |
)
|
81 |
|
82 |
-
|
83 |
-
multiquery_retriever = MultiQueryRetriever.from_llm(
|
84 |
-
retriever=retriever, llm=retriever_llm
|
85 |
-
)
|
86 |
|
87 |
|
88 |
@cl.on_chat_start
|
|
|
76 |
llm = ChatOpenAI(
|
77 |
model="gpt-4o-mini",
|
78 |
temperature=0,
|
|
|
79 |
)
|
80 |
|
81 |
+
multiquery_retriever = MultiQueryRetriever.from_llm(retriever=retriever, llm=llm)
|
|
|
|
|
|
|
82 |
|
83 |
|
84 |
@cl.on_chat_start
|