Spaces:
Sleeping
Sleeping
xicocdi
commited on
Commit
•
91402bc
1
Parent(s):
34f6bf3
Deploying Pythonic RAG
Browse files
app.py
CHANGED
@@ -1,3 +1,6 @@
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
from typing import List
|
3 |
from chainlit.types import AskFileResponse
|
@@ -25,6 +28,7 @@ Question:
|
|
25 |
"""
|
26 |
user_role_prompt = UserRolePrompt(user_prompt_template)
|
27 |
|
|
|
28 |
class RetrievalAugmentedQAPipeline:
|
29 |
def __init__(self, llm: ChatOpenAI(), vector_db_retriever: VectorDatabase) -> None:
|
30 |
self.llm = llm
|
@@ -39,21 +43,28 @@ class RetrievalAugmentedQAPipeline:
|
|
39 |
|
40 |
formatted_system_prompt = system_role_prompt.create_message()
|
41 |
|
42 |
-
formatted_user_prompt = user_role_prompt.create_message(
|
|
|
|
|
43 |
|
44 |
async def generate_response():
|
45 |
-
async for chunk in self.llm.astream(
|
|
|
|
|
46 |
yield chunk
|
47 |
|
48 |
return {"response": generate_response(), "context": context_list}
|
49 |
|
|
|
50 |
text_splitter = CharacterTextSplitter()
|
51 |
|
52 |
|
53 |
def process_text_file(file: AskFileResponse):
|
54 |
import tempfile
|
55 |
|
56 |
-
with tempfile.NamedTemporaryFile(
|
|
|
|
|
57 |
temp_file_path = temp_file.name
|
58 |
|
59 |
with open(temp_file_path, "wb") as f:
|
@@ -93,15 +104,14 @@ async def on_chat_start():
|
|
93 |
# Create a dict vector store
|
94 |
vector_db = VectorDatabase()
|
95 |
vector_db = await vector_db.abuild_from_list(texts)
|
96 |
-
|
97 |
chat_openai = ChatOpenAI()
|
98 |
|
99 |
# Create a chain
|
100 |
retrieval_augmented_qa_pipeline = RetrievalAugmentedQAPipeline(
|
101 |
-
vector_db_retriever=vector_db,
|
102 |
-
llm=chat_openai
|
103 |
)
|
104 |
-
|
105 |
# Let the user know that the system is ready
|
106 |
msg.content = f"Processing `{file.name}` done. You can now ask questions!"
|
107 |
await msg.update()
|
@@ -119,4 +129,4 @@ async def main(message):
|
|
119 |
async for stream_resp in result["response"]:
|
120 |
await msg.stream_token(stream_resp)
|
121 |
|
122 |
-
await msg.send()
|
|
|
1 |
+
# flake8: noqa
|
2 |
+
# pyright: ignore-all
|
3 |
+
|
4 |
import os
|
5 |
from typing import List
|
6 |
from chainlit.types import AskFileResponse
|
|
|
28 |
"""
|
29 |
user_role_prompt = UserRolePrompt(user_prompt_template)
|
30 |
|
31 |
+
|
32 |
class RetrievalAugmentedQAPipeline:
|
33 |
def __init__(self, llm: ChatOpenAI(), vector_db_retriever: VectorDatabase) -> None:
|
34 |
self.llm = llm
|
|
|
43 |
|
44 |
formatted_system_prompt = system_role_prompt.create_message()
|
45 |
|
46 |
+
formatted_user_prompt = user_role_prompt.create_message(
|
47 |
+
question=user_query, context=context_prompt
|
48 |
+
)
|
49 |
|
50 |
async def generate_response():
|
51 |
+
async for chunk in self.llm.astream(
|
52 |
+
[formatted_system_prompt, formatted_user_prompt]
|
53 |
+
):
|
54 |
yield chunk
|
55 |
|
56 |
return {"response": generate_response(), "context": context_list}
|
57 |
|
58 |
+
|
59 |
text_splitter = CharacterTextSplitter()
|
60 |
|
61 |
|
62 |
def process_text_file(file: AskFileResponse):
|
63 |
import tempfile
|
64 |
|
65 |
+
with tempfile.NamedTemporaryFile(
|
66 |
+
mode="w", delete=False, suffix=".txt"
|
67 |
+
) as temp_file:
|
68 |
temp_file_path = temp_file.name
|
69 |
|
70 |
with open(temp_file_path, "wb") as f:
|
|
|
104 |
# Create a dict vector store
|
105 |
vector_db = VectorDatabase()
|
106 |
vector_db = await vector_db.abuild_from_list(texts)
|
107 |
+
|
108 |
chat_openai = ChatOpenAI()
|
109 |
|
110 |
# Create a chain
|
111 |
retrieval_augmented_qa_pipeline = RetrievalAugmentedQAPipeline(
|
112 |
+
vector_db_retriever=vector_db, llm=chat_openai
|
|
|
113 |
)
|
114 |
+
|
115 |
# Let the user know that the system is ready
|
116 |
msg.content = f"Processing `{file.name}` done. You can now ask questions!"
|
117 |
await msg.update()
|
|
|
129 |
async for stream_resp in result["response"]:
|
130 |
await msg.stream_token(stream_resp)
|
131 |
|
132 |
+
await msg.send()
|