Spaces:
Running
on
A10G
Running
on
A10G
File size: 3,555 Bytes
d0fef57 d561a66 d0fef57 082c35d d0fef57 e836c0d d561a66 082c35d d561a66 d0fef57 082c35d d0fef57 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
import os
import cv2
import gradio as gr
import torch
from realesrgan_utils import RealESRGANer
from srvgg_arch import SRVGGNetCompact
os.system("pip freeze")
os.system(
"wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -P ./weights")
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.2.pth -P ./weights")
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth -P ./weights")
torch.hub.download_url_to_file(
'https://upload.wikimedia.org/wikipedia/commons/thumb/a/ab/Abraham_Lincoln_O-77_matte_collodion_print.jpg/1024px-Abraham_Lincoln_O-77_matte_collodion_print.jpg',
'lincoln.jpg')
torch.hub.download_url_to_file('https://upload.wikimedia.org/wikipedia/commons/5/50/Albert_Einstein_%28Nobel%29.png',
'einstein.png')
torch.hub.download_url_to_file(
'https://upload.wikimedia.org/wikipedia/commons/thumb/9/9d/Thomas_Edison2.jpg/1024px-Thomas_Edison2.jpg',
'edison.jpg')
torch.hub.download_url_to_file(
'https://upload.wikimedia.org/wikipedia/commons/thumb/a/a9/Henry_Ford_1888.jpg/1024px-Henry_Ford_1888.jpg',
'Henry.jpg')
torch.hub.download_url_to_file(
'https://upload.wikimedia.org/wikipedia/commons/thumb/0/06/Frida_Kahlo%2C_by_Guillermo_Kahlo.jpg/800px-Frida_Kahlo%2C_by_Guillermo_Kahlo.jpg',
'Frida.jpg')
# determine models according to model names
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
netscale = 4
model_path = os.path.join('weights', 'realesr-general-x4v3.pth')
# restorer
half = True if torch.cuda.is_available() else False
upsampler = RealESRGANer(scale=netscale, model_path=model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half)
# Use GFPGAN for face enhancement
from gfpgan_utils import GFPGANer
face_enhancer = GFPGANer(
model_path='weights/GFPGANv1.3.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
os.makedirs('output', exist_ok=True)
def inference(img):
img = cv2.imread(img, cv2.IMREAD_UNCHANGED)
h, w = img.shape[0:2]
if h < 400:
img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4)
try:
_, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
except RuntimeError as error:
print('Error', error)
print('If you encounter CUDA out of memory, try to set --tile with a smaller number.')
else:
extension = 'png'
return output
title = "GFP-GAN"
description = "Gradio demo for GFP-GAN: Towards Real-World Blind Face Restoration with Generative Facial Prior. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below. Please click submit only once"
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2101.04061' target='_blank'>Towards Real-World Blind Face Restoration with Generative Facial Prior</a> | <a href='https://github.com/TencentARC/GFPGAN' target='_blank'>Github Repo</a></p><center><img src='https://visitor-badge.glitch.me/badge?page_id=akhaliq_GFPGAN' alt='visitor badge'></center>"
gr.Interface(
inference, [gr.inputs.Image(type="filepath", label="Input")],
gr.outputs.Image(type="numpy", label="Output (The whole image)"),
title=title,
description=description,
article=article,
examples=[['lincoln.jpg'], ['einstein.png'], ['edison.jpg'], ['Henry.jpg'], ['Frida.jpg']]).launch()
|