Spaces:
Running
on
A10G
Running
on
A10G
File size: 7,399 Bytes
d0fef57 d561a66 d0fef57 e6ac7d7 d0fef57 bdea2c9 112d8be d0fef57 e6ac7d7 d0fef57 e6ac7d7 d0fef57 e6ac7d7 ef5f95b d0fef57 e6ac7d7 d0fef57 0710318 082c35d 76cb1c1 d0fef57 76cb1c1 b1fd1a9 8008449 d0fef57 112d8be 76cb1c1 112d8be 76cb1c1 e6ac7d7 76cb1c1 2ba5174 76cb1c1 e6ac7d7 76cb1c1 112d8be 60126cc 112d8be 76cb1c1 b1fd1a9 76cb1c1 d561a66 e03007b 76cb1c1 77cbe96 82acb0f e6ac7d7 76cb1c1 95c11a1 e6ac7d7 76cb1c1 82acb0f e6ac7d7 76cb1c1 e6ac7d7 b261577 76cb1c1 ace7b70 76cb1c1 ace7b70 76cb1c1 d0fef57 60126cc 3a829b4 ace7b70 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
import os
import cv2
import gradio as gr
import torch
from basicsr.archs.srvgg_arch import SRVGGNetCompact
from gfpgan.utils import GFPGANer
from realesrgan.utils import RealESRGANer
os.system("pip freeze")
# download weights
if not os.path.exists('realesr-general-x4v3.pth'):
os.system("wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -P .")
if not os.path.exists('GFPGANv1.2.pth'):
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.2.pth -P .")
if not os.path.exists('GFPGANv1.3.pth'):
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth -P .")
if not os.path.exists('GFPGANv1.4.pth'):
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth -P .")
if not os.path.exists('RestoreFormer.pth'):
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/RestoreFormer.pth -P .")
if not os.path.exists('CodeFormer.pth'):
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/CodeFormer.pth -P .")
torch.hub.download_url_to_file(
'https://upload.wikimedia.org/wikipedia/commons/thumb/a/ab/Abraham_Lincoln_O-77_matte_collodion_print.jpg/1024px-Abraham_Lincoln_O-77_matte_collodion_print.jpg',
'lincoln.jpg')
torch.hub.download_url_to_file(
'https://user-images.githubusercontent.com/17445847/187400315-87a90ac9-d231-45d6-b377-38702bd1838f.jpg',
'AI-generate.jpg')
torch.hub.download_url_to_file(
'https://user-images.githubusercontent.com/17445847/187400981-8a58f7a4-ef61-42d9-af80-bc6234cef860.jpg',
'Blake_Lively.jpg')
torch.hub.download_url_to_file(
'https://user-images.githubusercontent.com/17445847/187401133-8a3bf269-5b4d-4432-b2f0-6d26ee1d3307.png',
'10045.png')
# background enhancer with RealESRGAN
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
model_path = 'realesr-general-x4v3.pth'
half = True if torch.cuda.is_available() else False
upsampler = RealESRGANer(scale=4, model_path=model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half)
os.makedirs('output', exist_ok=True)
# def inference(img, version, scale, weight):
def inference(img, version, scale):
# weight /= 100
print(img, version, scale)
if scale > 4:
scale = 4 # avoid too large scale value
try:
extension = os.path.splitext(os.path.basename(str(img)))[1]
img = cv2.imread(img, cv2.IMREAD_UNCHANGED)
if len(img.shape) == 3 and img.shape[2] == 4:
img_mode = 'RGBA'
elif len(img.shape) == 2: # for gray inputs
img_mode = None
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
else:
img_mode = None
h, w = img.shape[0:2]
if h > 3500 or w > 3500:
print('too large size')
return None, None
if h < 300:
img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4)
if version == 'v1.2':
face_enhancer = GFPGANer(
model_path='GFPGANv1.2.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
elif version == 'v1.3':
face_enhancer = GFPGANer(
model_path='GFPGANv1.3.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
elif version == 'v1.4':
face_enhancer = GFPGANer(
model_path='GFPGANv1.4.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
elif version == 'RestoreFormer':
face_enhancer = GFPGANer(
model_path='RestoreFormer.pth', upscale=2, arch='RestoreFormer', channel_multiplier=2, bg_upsampler=upsampler)
# elif version == 'CodeFormer':
# face_enhancer = GFPGANer(
# model_path='CodeFormer.pth', upscale=2, arch='CodeFormer', channel_multiplier=2, bg_upsampler=upsampler)
try:
# _, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True, weight=weight)
_, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
except RuntimeError as error:
print('Error', error)
try:
if scale != 2:
interpolation = cv2.INTER_AREA if scale < 2 else cv2.INTER_LANCZOS4
h, w = img.shape[0:2]
output = cv2.resize(output, (int(w * scale / 2), int(h * scale / 2)), interpolation=interpolation)
except Exception as error:
print('wrong scale input.', error)
if img_mode == 'RGBA': # RGBA images should be saved in png format
extension = 'png'
else:
extension = 'jpg'
save_path = f'output/out.{extension}'
cv2.imwrite(save_path, output)
output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB)
return output, save_path
except Exception as error:
print('global exception', error)
return None, None
title = "GFPGAN: Practical Face Restoration Algorithm"
description = r"""Gradio demo for <a href='https://github.com/TencentARC/GFPGAN' target='_blank'><b>GFPGAN: Towards Real-World Blind Face Restoration with Generative Facial Prior</b></a>.<br>
It can be used to restore your **old photos** or improve **AI-generated faces**.<br>
To use it, simply upload your image.<br>
If GFPGAN is helpful, please help to β the <a href='https://github.com/TencentARC/GFPGAN' target='_blank'>Github Repo</a> and recommend it to your friends π
"""
article = r"""
[![download](https://img.shields.io/github/downloads/TencentARC/GFPGAN/total.svg)](https://github.com/TencentARC/GFPGAN/releases)
[![GitHub Stars](https://img.shields.io/github/stars/TencentARC/GFPGAN?style=social)](https://github.com/TencentARC/GFPGAN)
[![arXiv](https://img.shields.io/badge/arXiv-Paper-<COLOR>.svg)](https://arxiv.org/abs/2101.04061)
If you have any question, please email π§ `[email protected]` or `[email protected]`.
<center><img src='https://visitor-badge.glitch.me/badge?page_id=akhaliq_GFPGAN' alt='visitor badge'></center>
<center><img src='https://visitor-badge.glitch.me/badge?page_id=Gradio_Xintao_GFPGAN' alt='visitor badge'></center>
"""
demo = gr.Interface(
inference, [
gr.Image(type="filepath", label="Input"),
# gr.Radio(['v1.2', 'v1.3', 'v1.4', 'RestoreFormer', 'CodeFormer'], type="value", value='v1.4', label='version'),
gr.Radio(['v1.2', 'v1.3', 'v1.4', 'RestoreFormer'], type="value", value='v1.4', label='version'),
gr.Number(label="Rescaling factor", value=2),
# gr.Slider(0, 100, label='Weight, only for CodeFormer. 0 for better quality, 100 for better identity', value=50)
], [
gr.Image(type="numpy", label="Output (The whole image)"),
gr.File(label="Download the output image")
],
title=title,
description=description,
article=article,
# examples=[['AI-generate.jpg', 'v1.4', 2, 50], ['lincoln.jpg', 'v1.4', 2, 50], ['Blake_Lively.jpg', 'v1.4', 2, 50],
# ['10045.png', 'v1.4', 2, 50]]).launch()
examples=[['AI-generate.jpg', 'v1.4', 2], ['lincoln.jpg', 'v1.4', 2], ['Blake_Lively.jpg', 'v1.4', 2],
['10045.png', 'v1.4', 2]])
demo.queue().launch()
|