Spaces:
Running
on
A10G
Running
on
A10G
import math | |
import os | |
import queue | |
import threading | |
import cv2 | |
import numpy as np | |
import torch | |
from basicsr.utils.download_util import load_file_from_url | |
from torch.nn import functional as F | |
ROOT_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) | |
class RealESRGANer(): | |
"""A helper class for upsampling images with RealESRGAN. | |
Args: | |
scale (int): Upsampling scale factor used in the networks. It is usually 2 or 4. | |
model_path (str): The path to the pretrained model. It can be urls (will first download it automatically). | |
model (nn.Module): The defined network. Default: None. | |
tile (int): As too large images result in the out of GPU memory issue, so this tile option will first crop | |
input images into tiles, and then process each of them. Finally, they will be merged into one image. | |
0 denotes for do not use tile. Default: 0. | |
tile_pad (int): The pad size for each tile, to remove border artifacts. Default: 10. | |
pre_pad (int): Pad the input images to avoid border artifacts. Default: 10. | |
half (float): Whether to use half precision during inference. Default: False. | |
""" | |
def __init__(self, scale, model_path, model=None, tile=0, tile_pad=10, pre_pad=10, half=False): | |
self.scale = scale | |
self.tile_size = tile | |
self.tile_pad = tile_pad | |
self.pre_pad = pre_pad | |
self.mod_scale = None | |
self.half = half | |
# initialize model | |
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
# if the model_path starts with https, it will first download models to the folder: realesrgan/weights | |
if model_path.startswith('https://'): | |
model_path = load_file_from_url( | |
url=model_path, model_dir=os.path.join(ROOT_DIR, 'realesrgan/weights'), progress=True, file_name=None) | |
loadnet = torch.load(model_path, map_location=torch.device('cpu')) | |
# prefer to use params_ema | |
if 'params_ema' in loadnet: | |
keyname = 'params_ema' | |
else: | |
keyname = 'params' | |
model.load_state_dict(loadnet[keyname], strict=True) | |
model.eval() | |
self.model = model.to(self.device) | |
if self.half: | |
self.model = self.model.half() | |
def pre_process(self, img): | |
"""Pre-process, such as pre-pad and mod pad, so that the images can be divisible | |
""" | |
img = torch.from_numpy(np.transpose(img, (2, 0, 1))).float() | |
self.img = img.unsqueeze(0).to(self.device) | |
if self.half: | |
self.img = self.img.half() | |
# pre_pad | |
if self.pre_pad != 0: | |
self.img = F.pad(self.img, (0, self.pre_pad, 0, self.pre_pad), 'reflect') | |
# mod pad for divisible borders | |
if self.scale == 2: | |
self.mod_scale = 2 | |
elif self.scale == 1: | |
self.mod_scale = 4 | |
if self.mod_scale is not None: | |
self.mod_pad_h, self.mod_pad_w = 0, 0 | |
_, _, h, w = self.img.size() | |
if (h % self.mod_scale != 0): | |
self.mod_pad_h = (self.mod_scale - h % self.mod_scale) | |
if (w % self.mod_scale != 0): | |
self.mod_pad_w = (self.mod_scale - w % self.mod_scale) | |
self.img = F.pad(self.img, (0, self.mod_pad_w, 0, self.mod_pad_h), 'reflect') | |
def process(self): | |
# model inference | |
self.output = self.model(self.img) | |
def tile_process(self): | |
"""It will first crop input images to tiles, and then process each tile. | |
Finally, all the processed tiles are merged into one images. | |
Modified from: https://github.com/ata4/esrgan-launcher | |
""" | |
batch, channel, height, width = self.img.shape | |
output_height = height * self.scale | |
output_width = width * self.scale | |
output_shape = (batch, channel, output_height, output_width) | |
# start with black image | |
self.output = self.img.new_zeros(output_shape) | |
tiles_x = math.ceil(width / self.tile_size) | |
tiles_y = math.ceil(height / self.tile_size) | |
# loop over all tiles | |
for y in range(tiles_y): | |
for x in range(tiles_x): | |
# extract tile from input image | |
ofs_x = x * self.tile_size | |
ofs_y = y * self.tile_size | |
# input tile area on total image | |
input_start_x = ofs_x | |
input_end_x = min(ofs_x + self.tile_size, width) | |
input_start_y = ofs_y | |
input_end_y = min(ofs_y + self.tile_size, height) | |
# input tile area on total image with padding | |
input_start_x_pad = max(input_start_x - self.tile_pad, 0) | |
input_end_x_pad = min(input_end_x + self.tile_pad, width) | |
input_start_y_pad = max(input_start_y - self.tile_pad, 0) | |
input_end_y_pad = min(input_end_y + self.tile_pad, height) | |
# input tile dimensions | |
input_tile_width = input_end_x - input_start_x | |
input_tile_height = input_end_y - input_start_y | |
tile_idx = y * tiles_x + x + 1 | |
input_tile = self.img[:, :, input_start_y_pad:input_end_y_pad, input_start_x_pad:input_end_x_pad] | |
# upscale tile | |
try: | |
with torch.no_grad(): | |
output_tile = self.model(input_tile) | |
except RuntimeError as error: | |
print('Error', error) | |
print(f'\tTile {tile_idx}/{tiles_x * tiles_y}') | |
# output tile area on total image | |
output_start_x = input_start_x * self.scale | |
output_end_x = input_end_x * self.scale | |
output_start_y = input_start_y * self.scale | |
output_end_y = input_end_y * self.scale | |
# output tile area without padding | |
output_start_x_tile = (input_start_x - input_start_x_pad) * self.scale | |
output_end_x_tile = output_start_x_tile + input_tile_width * self.scale | |
output_start_y_tile = (input_start_y - input_start_y_pad) * self.scale | |
output_end_y_tile = output_start_y_tile + input_tile_height * self.scale | |
# put tile into output image | |
self.output[:, :, output_start_y:output_end_y, | |
output_start_x:output_end_x] = output_tile[:, :, output_start_y_tile:output_end_y_tile, | |
output_start_x_tile:output_end_x_tile] | |
def post_process(self): | |
# remove extra pad | |
if self.mod_scale is not None: | |
_, _, h, w = self.output.size() | |
self.output = self.output[:, :, 0:h - self.mod_pad_h * self.scale, 0:w - self.mod_pad_w * self.scale] | |
# remove prepad | |
if self.pre_pad != 0: | |
_, _, h, w = self.output.size() | |
self.output = self.output[:, :, 0:h - self.pre_pad * self.scale, 0:w - self.pre_pad * self.scale] | |
return self.output | |
def enhance(self, img, outscale=None, alpha_upsampler='realesrgan'): | |
h_input, w_input = img.shape[0:2] | |
# img: numpy | |
img = img.astype(np.float32) | |
if np.max(img) > 256: # 16-bit image | |
max_range = 65535 | |
print('\tInput is a 16-bit image') | |
else: | |
max_range = 255 | |
img = img / max_range | |
if len(img.shape) == 2: # gray image | |
img_mode = 'L' | |
img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB) | |
elif img.shape[2] == 4: # RGBA image with alpha channel | |
img_mode = 'RGBA' | |
alpha = img[:, :, 3] | |
img = img[:, :, 0:3] | |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | |
if alpha_upsampler == 'realesrgan': | |
alpha = cv2.cvtColor(alpha, cv2.COLOR_GRAY2RGB) | |
else: | |
img_mode = 'RGB' | |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | |
# ------------------- process image (without the alpha channel) ------------------- # | |
self.pre_process(img) | |
if self.tile_size > 0: | |
self.tile_process() | |
else: | |
self.process() | |
output_img = self.post_process() | |
output_img = output_img.data.squeeze().float().cpu().clamp_(0, 1).numpy() | |
output_img = np.transpose(output_img[[2, 1, 0], :, :], (1, 2, 0)) | |
if img_mode == 'L': | |
output_img = cv2.cvtColor(output_img, cv2.COLOR_BGR2GRAY) | |
# ------------------- process the alpha channel if necessary ------------------- # | |
if img_mode == 'RGBA': | |
if alpha_upsampler == 'realesrgan': | |
self.pre_process(alpha) | |
if self.tile_size > 0: | |
self.tile_process() | |
else: | |
self.process() | |
output_alpha = self.post_process() | |
output_alpha = output_alpha.data.squeeze().float().cpu().clamp_(0, 1).numpy() | |
output_alpha = np.transpose(output_alpha[[2, 1, 0], :, :], (1, 2, 0)) | |
output_alpha = cv2.cvtColor(output_alpha, cv2.COLOR_BGR2GRAY) | |
else: # use the cv2 resize for alpha channel | |
h, w = alpha.shape[0:2] | |
output_alpha = cv2.resize(alpha, (w * self.scale, h * self.scale), interpolation=cv2.INTER_LINEAR) | |
# merge the alpha channel | |
output_img = cv2.cvtColor(output_img, cv2.COLOR_BGR2BGRA) | |
output_img[:, :, 3] = output_alpha | |
# ------------------------------ return ------------------------------ # | |
if max_range == 65535: # 16-bit image | |
output = (output_img * 65535.0).round().astype(np.uint16) | |
else: | |
output = (output_img * 255.0).round().astype(np.uint8) | |
if outscale is not None and outscale != float(self.scale): | |
output = cv2.resize( | |
output, ( | |
int(w_input * outscale), | |
int(h_input * outscale), | |
), interpolation=cv2.INTER_LANCZOS4) | |
return output, img_mode | |
class PrefetchReader(threading.Thread): | |
"""Prefetch images. | |
Args: | |
img_list (list[str]): A image list of image paths to be read. | |
num_prefetch_queue (int): Number of prefetch queue. | |
""" | |
def __init__(self, img_list, num_prefetch_queue): | |
super().__init__() | |
self.que = queue.Queue(num_prefetch_queue) | |
self.img_list = img_list | |
def run(self): | |
for img_path in self.img_list: | |
img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED) | |
self.que.put(img) | |
self.que.put(None) | |
def __next__(self): | |
next_item = self.que.get() | |
if next_item is None: | |
raise StopIteration | |
return next_item | |
def __iter__(self): | |
return self | |
class IOConsumer(threading.Thread): | |
def __init__(self, opt, que, qid): | |
super().__init__() | |
self._queue = que | |
self.qid = qid | |
self.opt = opt | |
def run(self): | |
while True: | |
msg = self._queue.get() | |
if isinstance(msg, str) and msg == 'quit': | |
break | |
output = msg['output'] | |
save_path = msg['save_path'] | |
cv2.imwrite(save_path, output) | |
print(f'IO worker {self.qid} is done.') | |