File size: 8,249 Bytes
63a1401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9dc9335
63a1401
 
 
9ba63d6
 
 
 
 
 
 
63a1401
9dc9335
9ba63d6
e157bd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ba63d6
63a1401
e157bd5
63a1401
 
 
 
e157bd5
 
 
 
 
 
 
 
 
 
63a1401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import logging
import pandas as pd
import os
import csv

import src.envs as envs

from src.backend.model_operations import SummaryGenerator, EvaluationModel
import src.backend.util as util

logging.basicConfig(level=logging.INFO,
                    format='%(asctime)s - %(levelname)s - %(message)s')


class Evaluator:
    """A class to evaluate summaries generated by a language model.

    Attributes:
        model (str): The name or path of the model.
        revision (str): The model revision.
        precision (str): The precision setting of the model.
        num_fewshot (int): Number of few-shot examples to use.
        batch_size (int): Batch size for processing.
        device (str): The device to run the model on.
        no_cache (bool): Flag to disable caching.
        limit (int): Limit on the number of items to process.
        write_out (bool): Whether to write results to a file.
        output_base_path (str): Base path for output files.
        summary_generator (SummaryGenerator): Instance for generating summaries.
        eval_model (EvaluationModel): Instance for evaluating summaries.
    """
    def __init__(self, model, revision, precision, batch_size,
                device, no_cache, limit, write_out=True,
                output_base_path='logs'):
        """Initializes the Evaluator with the given model and settings.

        Args:
            model (str): The name or path of the model.
            revision (str): The model revision.
            precision (str): The precision setting of the model.
            num_fewshot (int): Number of few-shot examples to use.
            batch_size (int): Batch size for processing.
            device (str): The device to run the model on.
            no_cache (bool): Flag to disable caching.
            limit (int): Limit on the number of items to process.
            write_out (bool): Whether to write results to a file.
            output_base_path (str): Base path for output files.
        """
        self.model = model
        self.revision = revision
        self.precision = precision
        self.batch_size = batch_size
        self.device = device
        self.no_cache = no_cache
        self.limit = limit
        self.write_out = write_out
        self.output_base_path = output_base_path
        try:
            self.summary_generator = SummaryGenerator(model, revision)
            self.eval_model = EvaluationModel(envs.HEM_PATH)
        except Exception as e:
            logging.error(f"Error initializing Evaluator: {e}")
            raise

    def evaluate(self):
        """
        Performs the evaluation process by generating summaries 
        and computing metrics.

        Returns:
            dict: A dictionary containing evaluation results.
        """
        try:
            from openpyxl import load_workbook
            # df = load_workbook(filename=envs.DATASET_PATH)
            df_prompt = load_workbook(filename=envs.PROMPT_PATH)

            # df = pd.read_excel(envs.DATASET_PATH, engine='xlrd') #读取原数据,原始数据,本项目这里应该是问题
            # df_prompt = pd.read_excel(envs.PROMPT_PATH, engine='xlrd')
            # df_prompt = pd.read_csv(envs.PROMPT_PATH)
            # print(envs.DATASET_PATH)
            # print(df.shape)
            # print(df.iloc[-1])
            self.generated_summaries_df = self.summary_generator.generate_summaries(envs.DATASET_PATH, df_prompt, save_path=f"./generation_results/{self.model}.csv")
            # exit()
            # avg_summary_len = self.summary_generator.avg_length
            # answer_rate = self.summary_generator.answer_rate
            envs.API.upload_file(
                path_or_fileobj=f"./generation_results/{self.model}.csv",
                path_in_repo=f"{self.model}.csv",
                repo_id=envs.RESULTS_REPO,
                repo_type="dataset",
            )

            '''开始评估模型的结果'''
            self.humanlike = self.eval_model.evaluate_humanlike(self.generated_summaries_df, envs.HUMAN_DATA, f"./generation_results/{self.model}.csv")

            all_results = self.humanlike
            # Prepare individual experiment scores and CIs
            experiment_results = {}
            for exp, data in all_results['per_experiment'].items():
                experiment_results[f'{exp}'] = data['average_js_divergence']
                experiment_results[f'{exp}_ci'] = data['confidence_interval']

            # Write results into results using util.format_results
            results = util.format_results(
                model_name=self.model,
                revision=self.revision,
                precision=self.precision,
                overall_js=all_results['overall']['average_js_divergence'],
                overall_ci=all_results['overall']['confidence_interval'],
                **experiment_results  # Unpack the experiment results
            )

            '''原始指标'''

            # self.hallucination_scores, self.eval_results = self.eval_model.evaluate_hallucination(
                # self.generated_summaries_df)
            # factual_consistency_rate = self.eval_model.compute_factual_consistency_rate()
            # hallucination_rate = self.eval_model.hallucination_rate
            # factual_consistency_rate = 0
            # answer_rate = 0
            # avg_summary_len = 0
            #
            # results = util.format_results(model_name=self.model, revision=self.revision,
            #                             precision=self.precision,
            #                             factual_consistency_rate=factual_consistency_rate,
            #                             hallucination_rate=self.humanlike,
            #                             answer_rate=answer_rate,
            #                             avg_summary_len=avg_summary_len)
            return results
        except FileNotFoundError:
            logging.error(f"File not found: {envs.DATASET_PATH}")
            raise
        except Exception as e:
            logging.error(f"Error during evaluation: {e}")
            raise

    def write_results(self):
        print('Updating result files')
        leaderboard_path = os.getcwd() # the path of leaderboard folder
        print(leaderboard_path)
        working_path = os.path.join(leaderboard_path, 'Humanlike Leaderboard Results')
        if not os.path.exists(working_path):
            logging.error(f"Need to first download the results from google drive to the learderboard folder")
            raise
        
        source_summary_df = self.generated_summaries_df[["user_prompt", "response"]]

        # #update leaderboard_summaries.csv
        # #first remove previous results for the current model
        # existing_df = pd.read_csv(os.path.join(working_path, 'leaderboard_summaries.csv'), encoding='utf-8', sep="\t")
        # mask = existing_df['model'] == self.model
        # existing_df = existing_df[~mask]
        # # get new result
        leaderboard_summaries_df = source_summary_df
        leaderboard_summaries_df.insert(2, "model", [self.model]*leaderboard_summaries_df.shape[0])
        leaderboard_summaries_df.to_csv(os.path.join(working_path, 'leaderboard_summaries.csv'), mode='a', index=False, header=False)
        print('leaderboard_summaries.csv has been updated')

        # update leaderboard_summaries_with_scores.csv
        # BUG: get error when opening the file
        # existing_df = pd.read_csv(os.path.join(working_path, 'leaderboard_summaries_with_scores.csv'), 
        #                         encoding='utf-8', sep=",", on_bad_lines='warn', quotechar='"', quoting=2)
        # print(existing_df.shape)
        # mask = existing_df['model'] == self.model
        # existing_df = existing_df[~mask]
        # get new result
        leaderboard_summaries_with_scores_df = pd.DataFrame.from_dict(self.eval_results)
        leaderboard_summaries_with_scores_df.insert(3, "model", [self.model]*leaderboard_summaries_with_scores_df.shape[0])
        leaderboard_summaries_with_scores_df.to_csv(os.path.join(working_path, 'leaderboard_summaries_with_scores.csv'), mode='a', index=False, header=False)
        print('leaderboard_summaries_with_scores.csv has been updated')