File size: 7,538 Bytes
63a1401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a968dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63a1401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a968dc
 
 
 
 
63a1401
 
 
 
 
 
 
 
 
2a968dc
63a1401
2a968dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63a1401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39125ad
63a1401
 
2a968dc
63a1401
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import argparse
import logging
import pprint
import os

from huggingface_hub import snapshot_download

import src.backend.run_eval_suite as run_eval_suite
import src.backend.manage_requests as manage_requests
import src.backend.sort_queue as sort_queue
import src.envs as envs

os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'expandable_segments:True'

logging.basicConfig(level=logging.ERROR)
pp = pprint.PrettyPrinter(width=80)

PENDING_STATUS = "PENDING"
RUNNING_STATUS = "RUNNING"
FINISHED_STATUS = "FINISHED"
FAILED_STATUS = "FAILED"
# import os
snapshot_download(repo_id=envs.RESULTS_REPO, revision="main",
                local_dir=envs.EVAL_RESULTS_PATH_BACKEND, repo_type="dataset", max_workers=60)

snapshot_download(repo_id=envs.QUEUE_REPO, revision="main",
                local_dir=envs.EVAL_REQUESTS_PATH_BACKEND, repo_type="dataset", max_workers=60)
# exit()

# def run_auto_eval(args):
#     if not args.reproduce:
#         current_pending_status = [PENDING_STATUS]
#         print('_________________')
#         manage_requests.check_completed_evals(
#             api=envs.API,
#             checked_status=RUNNING_STATUS,
#             completed_status=FINISHED_STATUS,
#             failed_status=FAILED_STATUS,
#             hf_repo=envs.QUEUE_REPO,
#             local_dir=envs.EVAL_REQUESTS_PATH_BACKEND,
#             hf_repo_results=envs.RESULTS_REPO,
#             local_dir_results=envs.EVAL_RESULTS_PATH_BACKEND
#         )
#         logging.info("Checked completed evals")
#         eval_requests = manage_requests.get_eval_requests(job_status=current_pending_status,
#                                                         hf_repo=envs.QUEUE_REPO,
#                                                         local_dir=envs.EVAL_REQUESTS_PATH_BACKEND)
#         logging.info("Got eval requests")
#         eval_requests = sort_queue.sort_models_by_priority(api=envs.API, models=eval_requests)
#         logging.info("Sorted eval requests")
#
#         print(f"Found {len(eval_requests)} {','.join(current_pending_status)} eval requests")
#         print(eval_requests)
#         if len(eval_requests) == 0:
#             print("No eval requests found. Exiting.")
#             return
#
#         if args.model is not None:
#             eval_request = manage_requests.EvalRequest(
#                 model=args.model,
#                 status=PENDING_STATUS,
#                 precision=args.precision
#             )
#             pp.pprint(eval_request)
#         else:
#             eval_request = eval_requests[0]
#             pp.pprint(eval_request)
#
#         # manage_requests.set_eval_request(
#         #     api=envs.API,
#         #     eval_request=eval_request,
#         #     new_status=RUNNING_STATUS,
#         #     hf_repo=envs.QUEUE_REPO,
#         #     local_dir=envs.EVAL_REQUESTS_PATH_BACKEND
#         # )
#         # logging.info("Set eval request to running, now running eval")
#
#         run_eval_suite.run_evaluation(
#             eval_request=eval_request,
#             local_dir=envs.EVAL_RESULTS_PATH_BACKEND,
#             results_repo=envs.RESULTS_REPO,
#             batch_size=1,
#             device=envs.DEVICE,
#             no_cache=True,
#             need_check=not args.publish,
#             write_results=args.update
#         )
#         logging.info("Eval finished, now setting status to finished")
#     else:
#         eval_request = manage_requests.EvalRequest(
#             model=args.model,
#             status=PENDING_STATUS,
#             precision=args.precision
#         )
#         pp.pprint(eval_request)
#         logging.info("Running reproducibility eval")
#
#         run_eval_suite.run_evaluation(
#             eval_request=eval_request,
#             local_dir=envs.EVAL_RESULTS_PATH_BACKEND,
#             results_repo=envs.RESULTS_REPO,
#             batch_size=1,
#             device=envs.DEVICE,
#             need_check=not args.publish,
#             write_results=args.update
#         )
#         logging.info("Reproducibility eval finished")

def run_auto_eval(args):
    if not args.reproduce:
        current_pending_status = [PENDING_STATUS]
        print('_________________')
        manage_requests.check_completed_evals(
            api=envs.API,
            checked_status=RUNNING_STATUS,
            completed_status=FINISHED_STATUS,
            failed_status=FAILED_STATUS,
            hf_repo=envs.QUEUE_REPO,
            local_dir=envs.EVAL_REQUESTS_PATH_BACKEND,
            hf_repo_results=envs.RESULTS_REPO,
            local_dir_results=envs.EVAL_RESULTS_PATH_BACKEND
        )
        logging.info("Checked completed evals")
        eval_requests = manage_requests.get_eval_requests(
            job_status=current_pending_status,
            hf_repo=envs.QUEUE_REPO,
            local_dir=envs.EVAL_REQUESTS_PATH_BACKEND
        )
        logging.info("Got eval requests")
        eval_requests = sort_queue.sort_models_by_priority(api=envs.API, models=eval_requests)
        logging.info("Sorted eval requests")

        print(f"Found {len(eval_requests)} {','.join(current_pending_status)} eval requests")
        if len(eval_requests) == 0:
            print("No eval requests found. Exiting.")
            return

        for eval_request in eval_requests:
            pp.pprint(eval_request)
            run_eval_suite.run_evaluation(
                eval_request=eval_request,
                local_dir=envs.EVAL_RESULTS_PATH_BACKEND,
                results_repo=envs.RESULTS_REPO,
                batch_size=1,
                device=envs.DEVICE,
                no_cache=True,
                need_check=not args.publish,
                write_results=args.update
            )
            logging.info(f"Eval finished for model {eval_request.model}, now setting status to finished")

            # Update the status to FINISHED
            manage_requests.set_eval_request(
                api=envs.API,
                eval_request=eval_request,
                new_status=FINISHED_STATUS,
                hf_repo=envs.QUEUE_REPO,
                local_dir=envs.EVAL_REQUESTS_PATH_BACKEND
            )

    else:
        eval_request = manage_requests.EvalRequest(
            model=args.model,
            status=PENDING_STATUS,
            precision=args.precision
        )
        pp.pprint(eval_request)
        logging.info("Running reproducibility eval")

        run_eval_suite.run_evaluation(
            eval_request=eval_request,
            local_dir=envs.EVAL_RESULTS_PATH_BACKEND,
            results_repo=envs.RESULTS_REPO,
            batch_size=1,
            device=envs.DEVICE,
            need_check=not args.publish,
            write_results=args.update
        )
        logging.info("Reproducibility eval finished")

def main():
    parser = argparse.ArgumentParser(description="Run auto evaluation with optional reproducibility feature")

    # Optional arguments
    parser.add_argument("--reproduce", type=bool, default=False, help="Reproduce the evaluation results")
    parser.add_argument("--model", type=str, default=None, help="Your Model ID")
    parser.add_argument("--precision", type=str, default="float16", help="Precision of your model")
    parser.add_argument("--publish", type=bool, default=True, help="whether directly publish the evaluation results on HF")
    parser.add_argument("--update", type=bool, default=False, help="whether to update google drive files")

    args = parser.parse_args()

    run_auto_eval(args)


if __name__ == "__main__":
    main()