File size: 9,499 Bytes
ee31436
 
 
 
 
 
56bf4e8
ee31436
56bf4e8
 
 
ee31436
 
 
 
56bf4e8
 
 
ee31436
56bf4e8
ee31436
56bf4e8
 
 
 
ee31436
 
 
56bf4e8
ee31436
 
 
 
 
 
 
66a40a4
 
 
ee31436
 
66a40a4
ee31436
 
56bf4e8
ee31436
 
56bf4e8
 
ee31436
56bf4e8
ee31436
56bf4e8
 
ee31436
56bf4e8
 
 
 
 
 
 
 
ee31436
 
 
56bf4e8
e7fdefd
d96a992
ee31436
e7fdefd
 
d96a992
e7fdefd
d96a992
4592770
8548d58
79cf136
 
9271c65
 
 
 
 
 
27d8f5d
9271c65
27d8f5d
9271c65
 
 
 
 
d24f6e8
9271c65
d24f6e8
8548d58
ee31436
8548d58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee31436
 
 
 
 
 
 
56bf4e8
ee31436
 
 
 
 
 
 
7fadd3a
 
27d8f5d
7cbe773
 
27d8f5d
e29f2bd
 
7c68972
ee31436
 
 
 
62e965e
56bf4e8
0d9757a
ee31436
 
7aeddee
ee31436
0d9757a
e7fdefd
56bf4e8
 
 
 
ee31436
 
 
56bf4e8
ee31436
 
7db1281
 
7a028b8
7db1281
 
56bf4e8
 
d24f6e8
56bf4e8
 
 
7db1281
ee31436
 
56bf4e8
ee31436
 
 
 
 
7cbe773
ee31436
 
 
e29f2bd
ee31436
e29f2bd
ee31436
 
e29f2bd
 
 
 
 
 
 
 
 
 
 
ee31436
 
 
 
 
56bf4e8
ee31436
56bf4e8
 
 
 
27d8f5d
56bf4e8
ee31436
 
 
 
27d8f5d
ee31436
27d8f5d
ee31436
 
 
 
56bf4e8
 
ee31436
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import glob
import json
import os
from dataclasses import dataclass

import numpy as np
import dateutil

import src.display.formatting as formatting
import src.display.utils as utils
import src.submission.check_validity as check_validity


@dataclass
class EvalResult:
    eval_name: str  # org_model_precision (uid)
    full_model: str  # org/model (path on hub)
    org: str
    model: str
    revision: str  # commit hash, "" if main
    results: dict
    precision: utils.Precision = utils.Precision.Unknown
    model_type: utils.ModelType = utils.ModelType.Unknown  # Pretrained, fine tuned, ...
    weight_type: utils.WeightType = utils.WeightType.Original  # Original or Adapter
    architecture: str = "Unknown"
    license: str = "?"
    likes: int = 0
    num_params: int = 0
    date: str = ""  # submission date of request file
    still_on_hub: bool = False

    @classmethod
    def init_from_json_file(self, json_filepath):
        """Inits the result from the specific model result file"""
        with open(json_filepath) as fp:
            data = json.load(fp)
        print('json_filepath',json_filepath)
        print(data)


        config = data.get("config")
        print(config)

        # Precision
        precision = utils.Precision.from_str(config.get("model_dtype"))

        # Get model and org
        full_model = config.get("model_name", config.get("model_args", None))
        org, model = full_model.split("/", 1) if "/" in full_model else (None, full_model)

        if org:
            result_key = f"{org}_{model}_{precision.value.name}"
        else:
            result_key = f"{model}_{precision.value.name}"

        still_on_hub, _, model_config = check_validity.is_model_on_hub(
            full_model, config.get("model_sha", "main"), trust_remote_code=True,
            test_tokenizer=False)

        if model_config:
            architecture = ";".join(getattr(model_config, "architectures", ["?"]))
        else:
            architecture = "?"

        # Extract results available in this file (some results are split in several files)
        results = {}
        for task in utils.Tasks:
            #print(task)

            task = task.value
            #print(task.benchmark)
            #print(task.metric)
            
            #print(task.col_name)

            #print(task.value)
            if isinstance(task.metric, str):
                # accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if
                #                  task.benchmark == k and isinstance(v, dict)])
                # accs = np.array([np.around(v*100, decimals=0) for k, v in data["results"].items() if task.benchmark == k])
                accs = []
                import math
                for k, v in data["results"].items():
                    if task.benchmark == k:
                        if isinstance(v, (int, float)) and not math.isnan(v):
                            accs.append(np.around(v * 100, decimals=1))
                        elif isinstance(v, list):
                            accs.extend([np.around(x * 100, decimals=1) for x in v if
                                         isinstance(x, (int, float)) and not math.isnan(x)])
                        else:
                            # 跳过 NaN 或不符合条件的值
                            accs.append(None)


                accs = np.array([x for x in accs if x is not None])

                accs = accs[accs != None]

                results[task.benchmark] = accs

            elif isinstance(task.metric, list):
                accs = np.array([str(v.get(task.metric, None)) for k, v in data["results"].items() if
                                 task.benchmark == k and isinstance(v, dict)])

                accs = accs[accs != None]

                results[task.benchmark] = accs

            else:
                print(f"Skipping task with unhandled metric type: {type(task.metric)}")

            # # We average all scores of a given metric (not all metrics are present in all files)
            # accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark == k])
            #
            # results[task.benchmark] = accs

        return self(
            eval_name=result_key,
            full_model=full_model,
            org=org,
            model=model,
            results=results,
            precision=precision,
            revision= config.get("model_sha", ""),
            still_on_hub=still_on_hub,
            architecture=architecture
        )

    def update_with_request_file(self, requests_path):
        """Finds the relevant request file for the current model and updates info with it"""
        all_files_before = os.listdir(requests_path)
        print("test the variable:", all_files_before)
        # print(self.full_model)
        #print(self.precision.value.name)
        request_file = get_request_file_for_model(requests_path, self.full_model)
        # print("file name:",request_file)
        #all_files = os.listdir(request_file)
        #print("Files in the folder:", all_files)


        try:
            with open(request_file, "r") as f:
                request = json.load(f)
            print(request)
            self.model_type = utils.ModelType.from_str(request.get("model_type", ""))
            #self.weight_type = utils.WeightType[request.get("weight_type", "Original")]
            self.license = request.get("license", "?")
            self.likes = request.get("likes", 0)
            self.num_params = int(float(request.get("params", "0").replace('B', '')))
            self.date = request.get("submitted_time", "")
            # print(self.license)
            print('updated:', self)
        except FileNotFoundError:
            print(f"Could not find request file for {self.org}/{self.model}")
        except json.JSONDecodeError:
            print(f"Error decoding JSON in request file for {self.org}/{self.model}")

    def to_dict(self):
        """Converts the Eval Result to a dict compatible with our dataframe display"""

        data_dict = {
            "eval_name": self.eval_name,  # not a column, just a save name,
            # utils.AutoEvalColumn.precision.name: self.precision.value.name,
            # utils.AutoEvalColumn.model_type.name: self.model_type.value.name,
            #utils.AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
            # utils.AutoEvalColumn.weight_type.name: self.weight_type.value.name,
            # utils.AutoEvalColumn.architecture.name: self.architecture,
            utils.AutoEvalColumn.model.name: formatting.make_clickable_model(self.full_model),
            utils.AutoEvalColumn.dummy.name: self.full_model,
            # utils.AutoEvalColumn.revision.name: self.revision,
            utils.AutoEvalColumn.license.name: self.license,
            utils.AutoEvalColumn.likes.name: self.likes,
            utils.AutoEvalColumn.params.name: self.num_params,
            # utils.AutoEvalColumn.still_on_hub.name: self.still_on_hub,
        }

        for task in utils.Tasks:
            data_dict[task.value.col_name] = self.results[task.value.benchmark]

        return data_dict


def get_request_file_for_model(requests_path, model_name):
    """Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
    request_files = os.path.join(
        requests_path,
        f"{model_name}.json",
    )
    #request_files = glob.glob(request_files)

    # Select correct request file (precision)
    # request_file = ""
    # request_files = sorted(request_files, reverse=True)
    # for tmp_request_file in request_files:
    #     with open(tmp_request_file, "r") as f:
    #         req_content = json.load(f)
    #         # if (
    #         #     req_content["status"] in ["FINISHED"]
    #         #     and req_content["precision"] == precision.split(".")[-1]
    #         # ):
    #         #     request_file = tmp_request_file
    return request_files


def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]:
    """From the path of the results folder root, extract all needed info for results"""
    model_result_filepaths = []
    print("results_path", results_path)
    for root, _, files in os.walk(results_path):
        print("file",files)
        for f in files:
            if f.endswith(".json"):
                model_result_filepaths.extend([os.path.join(root, f)])
    # print("model_result_filepaths:", model_result_filepaths)
    # exit()
    eval_results = {}
    for model_result_filepath in model_result_filepaths:
        # Creation of result
        eval_result = EvalResult.init_from_json_file(model_result_filepath)
        # print("request_path:",requests_path)
        eval_result.update_with_request_file(requests_path)
        # print(eval_result)

        # Store results of same eval together
        eval_name = eval_result.eval_name
        if eval_name in eval_results.keys():
            eval_results[eval_name].results.update({k: v for k, v in
                                                    eval_result.results.items() if v is not None})
        else:
            eval_results[eval_name] = eval_result

    results = []
    for v in eval_results.values():
        try:
            v.to_dict() # we test if the dict version is complete
            results.append(v)
        except KeyError:  # not all eval values present
            continue

    return results