Spaces:
Sleeping
Sleeping
File size: 3,802 Bytes
ee31436 56bf4e8 ee31436 56bf4e8 ee31436 56bf4e8 ee31436 56bf4e8 ee31436 56bf4e8 ee31436 56bf4e8 ee31436 56bf4e8 ee31436 56bf4e8 ee31436 56bf4e8 ee31436 56bf4e8 ee31436 56bf4e8 ee31436 56bf4e8 ee31436 56bf4e8 ee31436 56bf4e8 ee31436 56bf4e8 ee31436 56bf4e8 ee31436 56bf4e8 ee31436 56bf4e8 ee31436 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
import json
import os
from datetime import datetime, timezone
import src.display.formatting as formatting
import src.envs as envs
import src.submission.check_validity as check_validity
REQUESTED_MODELS = None
USERS_TO_SUBMISSION_DATES = None
def add_new_eval(
model: str,
base_model: str,
revision: str,
precision: str,
weight_type: str,
model_type: str,
):
global REQUESTED_MODELS
global USERS_TO_SUBMISSION_DATES
if not REQUESTED_MODELS:
REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = check_validity.already_submitted_models(envs.EVAL_REQUESTS_PATH)
user_name = ""
model_path = model
if "/" in model:
user_name = model.split("/")[0]
model_path = model.split("/")[1]
precision = precision.split(" ")[0]
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
if model_type is None or model_type == "":
return formatting.styled_error("Please select a model type.")
# Does the model actually exist?
if revision == "":
revision = "main"
# Is the model on the hub?
if weight_type in ["Delta", "Adapter"]:
base_model_on_hub, error, _ = check_validity.is_model_on_hub(model_name=base_model, revision=revision, token=envs.TOKEN, test_tokenizer=True)
if not base_model_on_hub:
return formatting.styled_error(f'Base model "{base_model}" {error}')
if not weight_type == "Adapter":
model_on_hub, error, _ = check_validity.is_model_on_hub(model_name=model, revision=revision, test_tokenizer=True)
if not model_on_hub:
return formatting.styled_error(f'Model "{model}" {error}')
# Is the model info correctly filled?
try:
model_info = envs.API.model_info(repo_id=model, revision=revision)
except Exception:
return formatting.styled_error("Could not get your model information. Please fill it up properly.")
model_size = check_validity.get_model_size(model_info=model_info, precision=precision)
# Were the model card and license filled?
try:
license = model_info.cardData["license"]
except Exception:
return formatting.styled_error("Please select a license for your model")
modelcard_OK, error_msg = check_validity.check_model_card(model)
if not modelcard_OK:
return formatting.styled_error(error_msg)
# Seems good, creating the eval
print("Adding new eval")
eval_entry = {
"model": model,
"base_model": base_model,
"revision": revision,
"precision": precision,
"weight_type": weight_type,
"status": "PENDING",
"submitted_time": current_time,
"model_type": model_type,
"likes": model_info.likes,
"params": model_size,
"license": license,
}
# Check for duplicate submission
if f"{model}_{revision}_{precision}" in REQUESTED_MODELS:
return formatting.styled_warning("This model has been already submitted.")
print("Creating eval file")
OUT_DIR = f"{envs.EVAL_REQUESTS_PATH}/{user_name}"
os.makedirs(OUT_DIR, exist_ok=True)
out_path = f"{OUT_DIR}/{model_path}_eval_request_False_{precision}_{weight_type}.json"
with open(out_path, "w") as f:
f.write(json.dumps(eval_entry))
print("Uploading eval file")
envs.API.upload_file(
path_or_fileobj=out_path,
path_in_repo=out_path.split("eval-queue/")[1],
repo_id=envs.QUEUE_REPO,
repo_type="dataset",
commit_message=f"Add {model} to eval queue",
)
# Remove the local file
os.remove(out_path)
return formatting.styled_message(
"Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list."
)
|