File size: 66,282 Bytes
63a1401
 
 
 
ad27ecb
63a1401
 
 
 
 
 
 
 
 
 
 
 
 
 
42fccfa
 
 
63a1401
 
 
 
42fccfa
 
 
9da8cd9
e157bd5
42fccfa
1ac6033
9da8cd9
15fa40a
 
 
338309c
 
05052dc
8588482
9da8cd9
05052dc
 
 
88e393c
05052dc
88e393c
9da8cd9
63a1401
 
 
 
 
 
05052dc
51b58f9
3f72150
63a1401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dcbdce4
63a1401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad27ecb
63a1401
 
ad27ecb
 
 
63a1401
bf50951
 
 
 
63a1401
 
 
 
ad27ecb
 
63a1401
ad27ecb
 
 
63a1401
ad27ecb
63a1401
ad27ecb
 
63a1401
 
 
 
 
 
 
 
 
 
 
 
 
 
ad27ecb
63a1401
bf50951
0e76736
bf50951
 
ad27ecb
63a1401
ad27ecb
63a1401
ad27ecb
63a1401
0e76736
63a1401
 
 
 
dcbdce4
ad27ecb
63a1401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad27ecb
 
 
 
 
86c17df
ad27ecb
 
 
 
dcbdce4
 
ad27ecb
dcbdce4
ad27ecb
 
 
 
bf50951
 
 
63a1401
 
2a968dc
 
 
 
 
9da8cd9
2a968dc
 
 
 
 
 
e157bd5
2a968dc
 
9da8cd9
2a968dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63a1401
 
 
 
 
e157bd5
63a1401
 
 
 
 
 
 
 
 
e157bd5
63a1401
 
 
ad27ecb
63a1401
 
 
 
ad27ecb
63a1401
 
 
 
 
 
 
 
 
 
 
ad27ecb
63a1401
 
 
 
 
 
 
 
 
 
 
 
ad27ecb
63a1401
 
 
 
 
 
ad27ecb
63a1401
 
 
9da8cd9
63a1401
 
e157bd5
63a1401
 
 
 
 
 
 
 
 
 
 
 
 
 
e157bd5
e1b4714
63a1401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad27ecb
 
 
 
 
 
 
 
 
 
 
63a1401
ad27ecb
e157bd5
ad27ecb
 
 
 
 
 
 
 
 
 
 
 
 
e157bd5
ad27ecb
 
 
63a1401
ad27ecb
 
 
e157bd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad27ecb
e157bd5
 
ad27ecb
 
e157bd5
ad27ecb
e157bd5
ad27ecb
 
 
 
 
 
e157bd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad27ecb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63a1401
 
 
 
ad27ecb
63a1401
e157bd5
63a1401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad27ecb
 
 
 
 
 
63a1401
 
 
 
 
 
ad27ecb
 
 
 
 
 
 
e157bd5
ad27ecb
 
 
 
 
 
9da8cd9
63a1401
 
 
 
 
 
 
 
 
 
 
 
88e393c
63a1401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad27ecb
63a1401
 
 
3f72150
 
 
 
e157bd5
 
63a1401
e157bd5
63a1401
 
 
 
 
 
 
 
 
 
ad27ecb
63a1401
 
e157bd5
63a1401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad27ecb
63a1401
e157bd5
63a1401
 
 
ad27ecb
63a1401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad27ecb
63a1401
ad27ecb
63a1401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad27ecb
 
63a1401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad27ecb
 
63a1401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad27ecb
 
63a1401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad27ecb
63a1401
 
 
 
 
 
 
 
ad27ecb
63a1401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad27ecb
 
63a1401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e157bd5
ad27ecb
63a1401
 
 
e157bd5
 
 
 
 
 
63a1401
e157bd5
63a1401
 
e157bd5
 
 
 
 
63a1401
e157bd5
63a1401
 
 
ad27ecb
63a1401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad27ecb
63a1401
 
 
 
e157bd5
ad27ecb
63a1401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f72150
63a1401
3f72150
 
 
 
 
 
 
 
 
e157bd5
 
63a1401
 
 
3f72150
63a1401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad27ecb
 
63a1401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad27ecb
 
63a1401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad27ecb
 
63a1401
 
 
 
 
e157bd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63a1401
 
 
 
 
 
 
 
 
 
 
 
 
 
ad27ecb
63a1401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e157bd5
 
 
 
 
 
63a1401
 
 
 
e157bd5
63a1401
 
 
 
 
 
 
 
 
ad27ecb
 
63a1401
 
ad27ecb
 
 
 
9da8cd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f72150
9da8cd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e157bd5
9da8cd9
 
 
 
 
 
 
 
 
e157bd5
 
9da8cd9
 
 
 
e157bd5
 
9da8cd9
 
 
 
 
 
 
e157bd5
9da8cd9
 
e157bd5
9da8cd9
 
 
 
e157bd5
 
 
 
 
 
 
 
 
 
9da8cd9
e157bd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad27ecb
9da8cd9
3f72150
63a1401
 
 
 
 
 
 
 
 
3f72150
 
63a1401
 
 
 
e157bd5
63a1401
9da8cd9
63a1401
 
 
9ba63d6
2924b58
9ba63d6
63a1401
 
 
 
 
98c5aed
2924b58
98c5aed
0e76736
2924b58
 
 
9da8cd9
 
3f72150
63a1401
9da8cd9
63a1401
 
 
 
 
 
 
 
 
ad27ecb
 
 
 
 
 
 
63a1401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
import os
import time
from datetime import datetime
import logging
from pathlib import Path
import requests
import json

import numpy as np
import pandas as pd
import spacy
from sentence_transformers import CrossEncoder
import litellm
# from litellm import completion
from tqdm import tqdm
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, AutoConfig, pipeline
# from accelerate import PartialState
# from accelerate.inference import prepare_pippy
import torch
# import cohere
# from openai import OpenAI
# # import google
import google.generativeai as genai

import src.backend.util as util
import src.envs as envs
#
# # import pandas as pd
# import scipy
from scipy.spatial.distance import jensenshannon
from scipy.stats import bootstrap
import numpy as np
import spacy_transformers

import subprocess

# Run the command to download the spaCy model
# subprocess.run(["python", "-m", "spacy", "download", "en_core_web_trf"], check=True)
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"], check=True)
# subprocess.run(["pip", "install", "spacy-transformers"], check=True)
subprocess.run(["pip", "install", "curated-transformers==0.1.1"], check=True)

# Load spacy model for word tokenization
# nlp = spacy.load("en_core_web_sm")
try:
    nlp1 = spacy.load("en_core_web_sm")
except OSError:
    print("无法加载模型,继续执行其他处理。")

# litellm.set_verbose=False
litellm.set_verbose=True
# Set up basic configuration for logging
logging.basicConfig(level=logging.INFO,
                    format='%(asctime)s - %(levelname)s - %(message)s')



# os.environ["HUGGINGFACE_API_KEY"] =  envs.TOKEN

def load_evaluation_model(model_path):
    """Load the evaluation model from the given path

    Args:
        model_path (str): Path to the evaluation model

    Returns:
        CrossEncoder: The evaluation model
    """
    # model = CrossEncoder(model_path)
    model = ""
    return model


class ModelLoadingException(Exception):
    """Exception raised for errors in loading a model.

    Attributes:
        model_id (str): The model identifier.
        revision (str): The model revision.
    """

    def __init__(self, model_id, revision, messages="Error initializing model"):
        self.model_id = model_id
        self.revision = revision
        super().__init__(f"{messages} id={model_id} revision={revision}")


class SummaryGenerator:
    """A class to generate summaries using a causal language model.

    Attributes:
        model (str): huggingface/{model_id}
        api_base (str): https://api-inference.huggingface.co/models/{model_id}
        summaries_df (DataFrame): DataFrame to store generated summaries.
        revision (str): Model revision.
        avg_length (float): Average length of summaries.
        answer_rate (float): Rate of non-empty summaries.
    """

    def __init__(self, model_id, revision):
        """
        Initializes the SummaryGenerator with a model.

        Args:
            model_id (str): Identifier for the model.
            revision (str): Revision of the model.
        """
        self.model_id = model_id
        self.model = f"huggingface/{model_id}"
        self.api_base = f"https://api-inference.huggingface.co/models/{model_id}"
        self.summaries_df = pd.DataFrame()
        self.revision = revision
        self.avg_length = None
        self.answer_rate = None
        self.exceptions = None
        self.local_model = None

    def generate_summaries(self, dataset, df_prompt, save_path=None):
        """Generate summaries for a given DataFrame of source docs.
           修改这里拉取模型生成结果
        Args:
            dataset (DataFrame): DataFrame containing source docs.
            
        Returns:
            summaries_df (DataFrame): Generated summaries by the model.
        """
        exceptions = []
        if (save_path is not None) and os.path.exists(save_path):
            '''已存在文件,可以读取已经存在的测试文本'''
            self.summaries_df = pd.read_csv(save_path)
            # print(self.summaries_df['Experiment'])

            print(f'Loaded generated summaries from {save_path}')
        else:
            '''测试文件不存在,则需要调用指定的模型来进行测试'''
            # prompt = {}
            # for index, row in tqdm(df_prompt.iterrows(), total=df_prompt.shape[0]):
            #     prompt['E' + row['Item']] = row['Prompt']
            xls = pd.ExcelFile(dataset)
            sheet_names = xls.sheet_names
            # sheet_names = df.sheetnames 
            print(f"Total: {len(sheet_names)}")
            print(sheet_names)

            Experiment_ID, Questions_ID, Item_ID, Condition, User_prompt, Response, Factor_2, Stimuli_1 = [], [], [], [], [] ,[], [], []
            exit_outer_loop = False  # bad model
            for i, sheet_name in enumerate(sheet_names, start=1):
                if exit_outer_loop:
                    break
                # 读取每个工作表  
                # if i > 2 and i ==1:
                #     continue
                print(i, sheet_name)
                df_sheet = pd.read_excel(xls, sheet_name=sheet_name)

                # 假设第一列是'Prompt0',但这里我们使用列名来避免硬编码  
                if 'Prompt0' in df_sheet.columns:
                    prompt_column = df_sheet['Prompt0']
                else:
                    # 如果'Prompt0'列不存在,则跳过该工作表或进行其他处理  
                    continue
                if i == 3 :
                    word1_list = df_sheet['Stimuli-2']
                    word2_list = df_sheet['Stimuli-3']
                    V2_column = []
                    for jj in range(len(word1_list)):
                        V2_column.append(word1_list[jj] + '_' + word2_list[jj])
                    # print(V2_column)
                elif i == 9:
                    V2_column = df_sheet['V2'] #SL, LS
                elif i == 4 or i == 6 :
                    V2_column = df_sheet['Stimuli-2'] #Stimuli-2
                else:
                    V2_column = [""] * len(prompt_column)
                q_column = df_sheet["ID"]
                Item_column = df_sheet["Item"]
                Condition_column = df_sheet["Condition"]
                Stimuli_1_column = df_sheet["Stimuli-1"]
                if 'Stimuli-2' in df_sheet.columns:
                    Stimuli_2_column = df_sheet["Stimuli-2"]

                for j, prompt_value in enumerate(tqdm(prompt_column, desc=f"Processing {sheet_name}"), start=0):
                    if exit_outer_loop:
                        break
                    ID = 'E' + str(i)
                    # q_ID = ID + '_' + str(j)  

                    # print(ID, q_ID, prompt_value)
                    system_prompt = envs.SYSTEM_PROMPT
                    _user_prompt = prompt_value
                    for ii in range(10):
                    # user_prompt = f"{envs.USER_PROMPT}\nPassage:\n{_source}"
                        while True:
                            try:
                                '''调用'''
                                print(ID,'-',j,'-',ii)

                                _response = self.generate_summary(system_prompt, _user_prompt)
                                # print(f"Finish index {index}")
                                break
                            except Exception as e:
                                if 'Rate limit reached' in str(e):
                                    wait_time = 3660
                                    current_time = datetime.now().strftime('%H:%M:%S')
                                    print(f"Rate limit hit at {current_time}. Waiting for 1 hour before retrying...")
                                    time.sleep(wait_time)
                                elif 'is currently loading' in str(e):
                                    wait_time = 200
                                    print(f"Model is loading, wait for {wait_time}")
                                    time.sleep(wait_time)
                                elif '429 Resource has been exhausted' in str(e): # for gemini models
                                    wait_time = 60
                                    print(f"Quota has reached, wait for {wait_time}")
                                    time.sleep(wait_time)
                                else:
                                    max_retries = 30
                                    retries = 0
                                    wait_time = 120

                                    while retries < max_retries:
                                        print(f"Error at index {i}: {e}")
                                        time.sleep(wait_time)
                                        try:
                                            _response = self.generate_summary(system_prompt, _user_prompt)
                                            break
                                        except Exception as ee:
                                            exceptions.append(ee)
                                            retries += 1
                                            print(f"Retry {retries}/{max_retries} failed at index {i}: {ee}")
                                            if retries >= max_retries:
                                                exit_outer_loop = True
                                                break


                        if exit_outer_loop:
                            break
                        if  i == 5:
                            print(_response)

                            def extract_responses(text, trigger_words=None):
                                if trigger_words is None:
                                    trigger_words = ["sure", "okay", "yes"]

                                try:
                                    sentences = text.split('\n')

                                    sentences = [sentence.strip() for sentence in sentences if sentence.strip()]

                                    sentences = [sentence.split(':', 1)[-1].strip() if ':' in sentence else sentence for
                                                 sentence in sentences]
                                    if any(sentences[0].lower().startswith(word) for word in trigger_words) and len(sentences)>2:
                                        _response1 = sentences[1].strip() if len(sentences) > 1 else None
                                        _response2 = sentences[2].strip() if len(sentences) > 2 else None
                                    else:
                                        _response1 = sentences[0].strip() if len(sentences) > 0 else None
                                        _response2 = sentences[1].strip() if len(sentences) > 1 else None

                                except Exception as e:
                                    print(f"Error occurred: {e}")
                                    _response1, _response2 = None, None


                                return _response1, _response2

                            _response1, _response2 = extract_responses(_response)
                            # if _response == None:
                            #     _response1, _response2 = "", ""
                            # else:
                            #     try:
                            #         import re
                            #         _response1,_response2 = re.split(r'\n\s*\n', _response.strip())
                            #     except:
                            #         _response1 = _response.split('\n\n')
                            #         if len(_response) == 2:
                            #             _response1, _response2 = _response[0], _response[1]
                            #         else:
                            #             _response1, _response2 = _response[0], ""

                            Experiment_ID.append(ID)
                            Questions_ID.append(q_column[j])
                            User_prompt.append(_user_prompt)
                            Response.append(_response2)
                            Factor_2.append(_response)
                            Stimuli_1.append(Stimuli_2_column[j])
                            Item_ID.append(Item_column[j])
                            Condition.append(Condition_column[j])

                            # the first sentence in the response is saved as E51
                            Experiment_ID.append(ID + '1')
                            Questions_ID.append(str(q_column[j]) + '1')
                            User_prompt.append(_user_prompt)
                            Response.append(_response1)
                            Factor_2.append(_response)
                            Stimuli_1.append(Stimuli_1_column[j])
                            Item_ID.append(Item_column[j])
                            Condition.append(Condition_column[j])

                        else:
                            Experiment_ID.append(ID)
                            Questions_ID.append(q_column[j])
                            User_prompt.append(_user_prompt)

                            Response.append(_response)
                            if i == 6:
                                Factor_2.append(Condition_column[j])
                                Stimuli_1.append(V2_column[j])
                            else:
                                Factor_2.append(V2_column[j])
                                Stimuli_1.append(Stimuli_1_column[j])
                            Item_ID.append(Item_column[j])
                            Condition.append(Condition_column[j])
                            print(_response)


                        # exit()

                    # Sleep to prevent hitting rate limits too frequently
                        time.sleep(1)

            self.summaries_df = pd.DataFrame(list(zip(Experiment_ID, Questions_ID, Item_ID, Condition, User_prompt, Response, Factor_2, Stimuli_1)),
                                            columns=["Experiment", "Question_ID", "Item", "Condition", "User_prompt", "Response","Factor 2","Stimuli 1"])

            if save_path is not None:
                print(f'Save summaries to {save_path}')
                fpath = Path(save_path)
                fpath.parent.mkdir(parents=True, exist_ok=True)
                self.summaries_df.to_csv(fpath)

        self.exceptions = exceptions
        # self._compute_avg_length()
        # self._compute_answer_rate()

        return self.summaries_df

    def generate_summary(self, system_prompt: str, user_prompt: str):
        # Using Together AI API
        using_together_api = False
        together_ai_api_models = ['mixtral', 'dbrx', 'wizardlm']
        for together_ai_api_model in together_ai_api_models:
            if together_ai_api_model in self.model_id.lower():
                #using_together_api = True
                break
        # print('适用哪一种LLM',together_ai_api_model , using_together_api)
        # print(self.model_id.lower()) #meta-llama/llama-2-7b-chat-hf
        # print('local',self.local_model) $None
        # exit()
        # if 'mixtral' in self.model_id.lower() or 'dbrx' in self.model_id.lower() or 'wizardlm' in self.model_id.lower(): # For mixtral and dbrx models, use Together AI API
        if using_together_api:
            # suffix = "completions" if ('mixtral' in self.model_id.lower() or 'base' in self.model_id.lower()) else "chat/completions"
            suffix = "chat/completions"
            url = f"https://api.together.xyz/v1/{suffix}"

            payload = {
                "model": self.model_id,
                # "max_tokens": 4096,
                'max_new_tokens': 100,
                # "temperature": 0.0,
                # 'repetition_penalty': 1.1 if 'mixtral' in self.model_id.lower() else 1
            }
            # if 'mixtral' in self.model_id.lower():
            #     # payload['prompt'] = user_prompt
            #     # payload['prompt'] = "Write a summary of the following passage:\nPassage:\n" + user_prompt.split('Passage:\n')[-1] + '\n\nSummary:'
            #     payload['prompt'] = 'You must stick to the passage provided. Provide a concise summary of the following passage, covering the core pieces of information described:\nPassage:\n' + user_prompt.split('Passage:\n')[-1] + '\n\nSummary:'
            #     print(payload)
            # else:
            #     payload['messages'] = [{"role": "system", "content": system_prompt},
            #                             {"role": "user", "content": user_prompt}]
            payload['messages'] = [{"role": "system", "content": system_prompt},
                                        {"role": "user", "content": user_prompt}]
            headers = {
                "accept": "application/json",
                "content-type": "application/json",
                "Authorization": f"Bearer {os.environ['TOGETHER_API_KEY']}"
            }

            response = requests.post(url, json=payload, headers=headers)
            try:
                result = json.loads(response.text)
                # print(result)
                result = result["choices"][0]
                if 'message' in result:
                    result = result["message"]["content"].strip()
                else:
                    result = result["text"]
                    result_candidates = [result_cancdidate for result_cancdidate in result.split('\n\n') if len(result_cancdidate) > 0]
                    result = result_candidates[0]
                print(result)
            except:
                print(response)
                result = ''
            print(result)
            return result
        if self.local_model: # cannot call API. using local model
            messages=[
                {"role": "system", "content": system_prompt}, # gemma-1.1 does not accept system role
                {"role": "user", "content": user_prompt}
            ]
            try: # some models support pipeline
                pipe = pipeline(
                    "text-generation",
                    model=self.local_model,
                    tokenizer=self.tokenizer,
                )

                generation_args = {
                    "max_new_tokens": 100,
                    "return_full_text": False,
                    #"temperature": 0.0,
                    "do_sample": False,
                }

                output = pipe(messages, **generation_args)
                result = output[0]['generated_text']
                print(result)
            except:
                prompt = self.tokenizer.apply_chat_template(messages,add_generation_prompt=True, tokenize=False)
                print(prompt)
                input_ids = self.tokenizer(prompt, return_tensors="pt").to('cuda')
                with torch.no_grad():
                    outputs = self.local_model.generate(**input_ids, max_new_tokens=100, do_sample=True, pad_token_id=self.tokenizer.eos_token_id)
                result = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
                result = result.replace(prompt[0], '')
                print(result)
            return result


        elif self.local_model is None:
            import random
            def get_random_token():
                i = random.randint(1, 20)
                token = getattr(envs, f"TOKEN{i}")
                return token, i

            tokens_tried = set()

            while len(tokens_tried) < 10:
                token,i = get_random_token()

                if token in tokens_tried:
                    continue

                tokens_tried.add(token)
                print(f"Trying with token: TOKEN{i}")

                try:
                    from huggingface_hub import InferenceClient
                    client = InferenceClient(self.model_id, api_key=token, headers={"X-use-cache": "false"})
                    messages = [{"role": "system", "content": system_prompt}, {"role": "user", "content": user_prompt}]
                    result = None

                    while result is None:
                        outputs = client.chat_completion(messages, max_tokens=100)
                        result = outputs['choices'][0]['message']['content']

                        if result is None:
                            time.sleep(1)  # Optional: Add a small delay before retrying

                    return result

                except Exception as e:
                    print(f"Error with token: {token}, trying another token...")
                    continue

            raise Exception("All tokens failed.")
#             print(self.model_id)
#             print(self.api_base)
#             mistralai/Mistral-7B-Instruct-v0.1
# https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.1
            # Using HF API or download checkpoints
            # try:  # try use HuggingFace API
            #     from huggingface_hub import InferenceClient
            #     print("token_for_request:",envs.TOKEN)
            #     print(self.model_id)
            #     client = InferenceClient(self.model_id,api_key=envs.TOKEN,headers={"X-use-cache": "false"})
            #     messages = [{"role": "system", "content": system_prompt},{"role": "user", "content": user_prompt}]
            #     # outputs = client.chat_completion(messages, max_tokens=100)
            #     result = None
            #     while result is None:
            #         outputs = client.chat_completion(messages, max_tokens=100)
            #         result = outputs['choices'][0]['message']['content']
            #
            #         if result is None:
            #             time.sleep(1)  # Optional: Add a small delay before retrying
            #
            #     return result
            #
            # except Exception as e:
            #     print(f"Error with TOKEN: {envs.TOKEN}, trying with TOKEN1")
            #     try:
            #         client = InferenceClient(self.model_id, api_key=envs.TOKEN1, headers={"X-use-cache": "false"})
            #         messages = [{"role": "system", "content": system_prompt}, {"role": "user", "content": user_prompt}]
            #         result = None
            #         while result is None:
            #             outputs = client.chat_completion(messages, max_tokens=100)
            #             result = outputs['choices'][0]['message']['content']
            #
            #             if result is None:
            #                 time.sleep(1)  # Optional: Add a small delay before retrying
            #
            #         return result
            #     except Exception as ee:
            #         print(f"Error with TOKEN1: {envs.TOKEN1}")
            #         raise ee


            # except: # fail to call api. run it locally.
            #     self.tokenizer = AutoTokenizer.from_pretrained(self.model_id, trust_remote_code=True)
            #     print("Tokenizer loaded")
            #     self.local_model = AutoModelForCausalLM.from_pretrained(self.model_id, trust_remote_code=True, device_map="auto", torch_dtype="auto", cache_dir='/home/paperspace/cache')
            #     print("Local model loaded")
                # response = litellm.completion(
                #     model="huggingface/"+'command-r-plus' if 'command' in self.model_id else self.model_id,
                #     messages=[{"role": "system", "content": system_prompt},
                #                 {"role": "user", "content": user_prompt}],
                #     temperature=0.0,
                #     max_tokens=1024,
                #     api_base= "https://api-inference.huggingface.co/models/" + self.model_id,
                # )
                # self.model_id = 'command-r-plus' if 'command' in self.model_id else self.model_id
                # response = litellm.completion(
                #             model="huggingface/" + self.model_id,
                #             # mistralai/Mistral-7B-Instruct-v0.1",
                #             messages=[{"role": "system", "content": system_prompt},
                #                 {"role": "user", "content": user_prompt}],
                #             #temperature=0.0,
                #             max_tokens=1024,
                #             api_base="https://api-inference.huggingface.co/models/" + self.model_id)
                # print("模型返回结果",response)
                # print("模型返回结果结束")
                # # exit()
                # result = response['choices'][0]['message']['content']
                # print(result)
                # exit()
                # Using Google AI API for Gemini models
        elif 'gemini' in self.model_id.lower():
            genai.configure(api_key=os.getenv('GOOGLE_AI_API_KEY'))
            generation_config = {
                "temperature": 0,
                "top_p": 0.95,  # cannot change
                "top_k": 0,
                "max_output_tokens": 100,
                # "response_mime_type": "application/json",
            }
            safety_settings = [
                {
                    "category": "HARM_CATEGORY_HARASSMENT",
                    "threshold": "BLOCK_NONE"
                },
                {
                    "category": "HARM_CATEGORY_HATE_SPEECH",
                    "threshold": "BLOCK_NONE"
                },
                {
                    "category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
                    "threshold": "BLOCK_NONE"
                },
                {
                    "category": "HARM_CATEGORY_DANGEROUS_CONTENT",
                    "threshold": "BLOCK_NONE"
                },
            ]
            model = genai.GenerativeModel(
                model_name="gemini-1.5-pro-latest" if "gemini-1.5-pro" in self.model_id.lower() else
                self.model_id.lower().split('google/')[-1],
                generation_config=generation_config,
                system_instruction=system_prompt,
                safety_settings=safety_settings)
            convo = model.start_chat(history=[])
            convo.send_message(user_prompt)
            # print(convo.last)
            result = convo.last.text
            print(result)
            return result
        # Using OpenAI API
        elif 'gpt' in self.model_id.lower():
            response = litellm.completion(
                model=self.model_id.replace('openai/',''),
                messages=[{"role": "system", "content": system_prompt},
                        {"role": "user", "content": user_prompt}],
                # temperature=0.0,
                max_tokens=100,
                api_key = os.getenv('OpenAI_key')
            )
            result = response['choices'][0]['message']['content']
            # print()
            print(result)
            return result
        # exit()
        # Using local model


    def _compute_avg_length(self):
        """
        Compute the average length of non-empty summaries using SpaCy.
        """
        total_word_count = 0
        total_count = 0

        for summary in self.summaries_df['summary']:
            if util.is_summary_valid(summary):
                doc = nlp1(summary)
                words = [token.text for token in doc if token.is_alpha]
                total_word_count += len(words)
                total_count += 1

        self.avg_length = 0 if total_count == 0 else total_word_count / total_count

    def _compute_answer_rate(self):
        """
        Compute the rate of non-empty summaries.
        """
        valid_count = sum(1 for summary in self.summaries_df['summary']
                            if util.is_summary_valid(summary))

        total_count = len(self.summaries_df)

        self.answer_rate = 0 if total_count == 0 else valid_count / total_count


class EvaluationModel:
    """A class to evaluate generated summaries.

    Attributes:
        model (CrossEncoder): The evaluation model.
        scores (list): List of evaluation scores.
        accuracy (float): Accuracy of the summaries.
        hallucination_rate (float): Rate of hallucination in summaries.
    """

    def __init__(self, model_path):
        """
        Initializes the EvaluationModel with a CrossEncoder model.

        Args:
            model_path (str): Path to the CrossEncoder model.
        """
        self.model = load_evaluation_model(model_path)
        self.scores = []
        self.factual_consistency_rate = None
        self.hallucination_rate = None
        self.humanlike_score = None

    def code_results(self, summaries_df):
        '''code results from LLM's response'''
        output = []
        '''database for Exp4'''
        item4 = pd.read_csv(envs.ITEM_4_DATA)
        wordpair2code = {}
        for j in range(len(item4['Coding'])):
            wordpair2code[item4['Pair'][j]] = item4['Coding'][j]
        '''verb for Exp5'''
        item5 = pd.read_csv(envs.ITEM_5_DATA)
        # item corresponding to verb, same item id corresponding to verb pair
        item2verb2 = {}
        item2verb1 = {}

        Stimuli1, Stimuli2 = {}, {}
        for j in range(len(item5['Item'])):
            item2verb1[item5['Item'][j]] = item5['Verb1'][j]
            item2verb2[item5['Item'][j]] = item5['Verb2'][j]
            Stimuli1[item5['ID'][j]] = item5['Stimuli-1'][j]
            Stimuli2[item5['ID'][j]] = item5['Stimuli-2'][j]


        male_keyword = ["he", "his", "himself"]
        female_keyword = ["she", "her", "herself"]
        print(len(summaries_df["Experiment"]))
        for i in range(len(summaries_df["Experiment"])):
            # vote_1_1, vote_1_2, vote_1_3 = 0, 0, 0
            # print()
            if pd.isna(summaries_df["Response"][i]):
                output.append("Other")
                continue
            rs = summaries_df["Response"][i].strip().lower()
            sentences = rs.split('\n')
            sentences = [sentence.split(':', 1)[-1].strip() if ':' in sentence else sentence
                         for sentence in sentences]
            rs = [sentence.strip() for sentence in sentences if sentence.strip()]
            rs = '\n'.join(rs)
            rs = rs.replace("[", '').replace("]", '')
            '''Exp1'''
            # period and comma will affect the result
            if summaries_df["Experiment"][i] == "E1":
                print("E1", rs)
                rs = rs.replace('"','')
                if rs == "round":
                    # vote_1_1 += 1
                    output.append("Round")
                elif rs == "spiky":
                    output.append("Spiky")
                else:
                    output.append("Other")


                '''Exp2'''
                # not the first pronoun
            elif summaries_df["Experiment"][i] == "E2":
                # rs = summaries_df["Response"][i].strip()
                rs = rs.split(' ')
                print("E2", rs)
                male, female = 0, 0
                for word in rs:
                    if word in female_keyword and male == 0:
                        female = 1
                        output.append("Female")
                        break
                    if word in male_keyword and female == 0:
                        male = 1
                        output.append("Male")
                        break
                if male == 0 and female == 0 :
                    output.append("Other")

                '''Exp3'''
                #
            elif summaries_df["Experiment"][i] == "E3":
                # rs = summaries_df["Response"][i].strip()
                print("E3", rs)
                if pd.isna(summaries_df["Factor 2"][i]):
                    output.append("Other")
                else:
                    if summaries_df["Factor 2"][i].strip() == "LS":
                        if "2" in rs:
                            output.append("Long")
                        elif "3" in rs:
                            output.append("Short")
                        else:
                            output.append("Other")
                    if summaries_df["Factor 2"][i].strip() == "SL":
                        if "2" in rs:
                            output.append("Short")
                        elif "3" in rs:
                            output.append("Long")
                        else:
                            output.append("Other")
                '''Exp4'''

            elif summaries_df["Experiment"][i] == "E4":
                # rs = summaries_df["Response"][i].strip()
                target = summaries_df["Factor 2"][i].strip().lower()
                pair = target + "_" + rs
                print("E4:", pair)
                if pair in wordpair2code.keys():
                    output.append(wordpair2code[pair])
                else:
                    output.append("Other")

                '''Exp5'''
            elif summaries_df["Experiment"][i] == "E5" or summaries_df["Experiment"][i] == "E51":
                # sentence = summaries_df["Response"][i].strip()
                item_id = summaries_df["Item"][i]
                question_id = summaries_df["Question_ID"][i]

                sti1, sti2 = "", ""

                if summaries_df["Experiment"][i] == "E51":
                    sti1 = Stimuli1[question_id[0:-1]].lower().replace("...", "")
                    sti2 = Stimuli2[question_id[0:-1]].lower().replace("...", "")
                    verb = item2verb1[item_id].lower()

                    sentence = sti1 + " " + rs.replace(sti1, "")
                    print("E5", verb, sentence)
                if summaries_df["Experiment"][i] == "E5":
                    sti1 = Stimuli1[question_id].lower().replace("...", "")
                # print(sti1)
                    sti2 = Stimuli2[question_id].lower().replace("...", "")

                    verb = item2verb2[item_id].lower()
                    sentence = sti2.replace("...","") + " " + rs.replace(sti2, "")
                    print("E5", verb, sentence)


                doc = nlp1(sentence.replace("  "," "))
                # print(doc)
                # print()
                verb_token = None
                for token in doc:
                    # print(token.lemma_)
                    if token.lemma_ == verb:
                        verb_token = token
                        break
                # exit()
                if verb_token is None:
                    output.append("Other")
                    print("E5 The target verb is missing from the sentence.")
                else:
                    pobj, dative = None, None
                    # print(verb_token.children)
                    # exit()
                    for child in verb_token.children:
                        print(child)
                        if (child.dep_ == 'dative' and child.pos_ == "ADP") or (child.text == "to" and child.dep_ == 'prep' and child.pos_ == "ADP"):
                            pobj = child.text
                        if child.dep_ == 'dative':
                            dative = child.text
                    print("E5", pobj, dative)
                    # exit()

                    if pobj:
                        output.append("PO")
                    elif dative:
                        output.append("DO")
                    else:
                        print("Other", sentence, pobj, dative)
                        # exit()
                        output.append("Other")

                '''Exp6'''

            elif summaries_df["Experiment"][i] == "E6":
                sentence = summaries_df["Stimuli 1"][i].strip().lower()
                print("E6", sentence)
                doc = nlp1(sentence)
                subject = "None"
                obj = "None"
                # 遍历依存关系,寻找主语和宾语  
                for token in doc:
                    if token.dep_ == "nsubj":
                        subject = token.text
                    elif token.dep_ == "dobj":
                        obj = token.text
                print("E6", subject, obj)
                if subject in rs and obj in rs:
                    print(rs, subject, obj, "Other")
                    output.append("Other")
                elif subject in rs:
                    print(rs, subject, obj, "VP")
                    output.append("VP")
                elif obj in rs:
                    print(rs, subject, obj, "NP")
                    output.append("NP")
                else:
                    print(rs, subject, obj, "Other")
                    output.append("Other")




                '''Exp7'''
            elif summaries_df["Experiment"][i] == "E7":
                # rs = summaries_df["Response"][i].strip().lower()
                print("E7",rs)
                if rs == "no":
                    output.append("0")
                elif rs == "yes":
                    output.append("1")
                else:
                    output.append("Other")

                '''Exp8'''
            elif summaries_df["Experiment"][i] == "E8":
                # rs = summaries_df["Response"][i].strip()

                if "something is wrong with the question" in rs:
                    output.append("1")
                else:
                    output.append("0")

                '''Exp9'''
            elif summaries_df["Experiment"][i] == "E9":
                male, female = 0, 0

                # rs = summaries_df["Response"][i].strip()
                if "because" in rs:
                    rs = rs.replace("because because","because").split("because")[1]
                else:
                    rs = rs
                condition = summaries_df["Factor 2"][i].strip()
                rs = rs.split(" ")
                for w in rs:
                    if w in male_keyword and female != 1:
                        male = 1
                        break
                    if w in female_keyword and male != 1:
                        female = 1
                        break
                print("E9", "condition", condition, "male", male, "female", female)
                if  male == 0 and female == 0:
                    output.append('Other')
                else:
                    if male == 1 and female==0:
                        if condition == "MF":
                            output.append("Subject")
                        elif condition == "FM":
                            output.append("Object")
                        else:
                            output.append("Other")
                    elif female == 1 and male ==0:
                        if condition == "MF":
                            output.append("Object")
                        elif condition == "FM":
                            output.append("Subject")
                        else:
                            output.append("Other")

                '''Exp10'''
            elif summaries_df["Experiment"][i] == "E10":
                # rs = summaries_df["Response"][i].strip()
                if rs == "yes":
                    output.append("1")
                else:
                    output.append("0")
            else:
                print("can;t find the Exp:", summaries_df["Experiment"][i])
                output.append("NA")
            # print(output)
        # exit()
        '''human'''
        self.data = pd.DataFrame(list(zip(summaries_df["Experiment"], summaries_df["Question_ID"], summaries_df["Item"],  summaries_df["Response"], summaries_df["Factor 2"], summaries_df["Stimuli 1"], summaries_df["Coding"], output)),
                                            columns=["Experiment", "Question_ID", "Item",  "Response", "Factor 2", "Simulate 1","Original_Coding","Coding"])
        # '''LLM'''
        # self.data = pd.DataFrame(list(zip(summaries_df["Experiment"], summaries_df["Question_ID"], summaries_df["Item"],  summaries_df["Response"], summaries_df["Factor 2"], summaries_df["Stimuli 1"], output)),
        #                                     columns=["Experiment", "Question_ID", "Item",  "Response", "Factor 2", "Simulate 1","Coding"])
        print(self.data.head())

        return self.data
    def code_results_llm(self, summaries_df):
        '''code results from LLM's response'''
        output = []
        '''database for Exp4'''
        item4 = pd.read_csv(envs.ITEM_4_DATA)
        wordpair2code = {}
        for j in range(len(item4['Coding'])):
            wordpair2code[item4['Pair'][j]] = item4['Coding'][j]
        '''verb for Exp5'''
        item5 = pd.read_csv(envs.ITEM_5_DATA)
        # item corresponding to verb, same item id corresponding to verb pair
        item2verb2 = {}
        item2verb1 = {}

        Stimuli1, Stimuli2 = {}, {}
        for j in range(len(item5['Item'])):
            item2verb1[item5['Item'][j]] = item5['Verb1'][j]
            item2verb2[item5['Item'][j]] = item5['Verb2'][j]
            Stimuli1[item5['ID'][j]] = item5['Stimuli-1'][j]
            Stimuli2[item5['ID'][j]] = item5['Stimuli-2'][j]


        male_keyword = ["he", "his", "himself"]
        female_keyword = ["she", "her", "herself"]
        print(len(summaries_df["Experiment"]))
        for i in range(len(summaries_df["Experiment"])):
            # vote_1_1, vote_1_2, vote_1_3 = 0, 0, 0
            # print()
            # data cleaning
            if pd.isna(summaries_df["Response"][i]):
                output.append("Other")
                continue
            rs = summaries_df["Response"][i].strip().lower()
            sentences = rs.split('\n')
            sentences = [sentence.split(':', 1)[-1].strip() if ':' in sentence else sentence
                         for sentence in sentences]
            rs = [sentence.strip() for sentence in sentences if sentence.strip()]
            rs = '\n'.join(rs)
            rs = rs.replace('[', '').replace(']','').replace('.','')
            '''Exp1'''
            # the period and comma will affect the result
            if summaries_df["Experiment"][i] == "E1":
                print("E1", rs)
                rs = rs.replace('"', '')  # Remove any unnecessary quotation marks
                rs_cleaned = rs.replace(',', '')  # Remove periods and commas

                # Use 'contains' instead of 'equals' for keyword matching to avoid issues caused by punctuation
                if "round" in rs_cleaned:
                    output.append("Round")
                elif "spiky" in rs_cleaned:
                    output.append("Spiky")
                else:
                    output.append("Other")


                '''Exp2'''

            elif summaries_df["Experiment"][i] == "E2":
                rs = rs.split(' ')
                print("E2", rs)
                male, female = 0, 0
                for word in rs:
                    if word in female_keyword and male == 0:
                        female = 1
                        output.append("Female")
                        break
                    if word in male_keyword and female == 0:
                        male = 1
                        output.append("Male")
                        break
                if male == 0 and female == 0 :
                    output.append("Other")

                '''Exp3'''
            elif summaries_df["Experiment"][i] == "E3":
                # rs = summaries_df["Response"][i].strip()
                print("E3", rs)
                rs = rs.replace('"', '').lower().replace(".","")
                pair = summaries_df["Factor 2"][i]
                word1, word2 = pair.split('_')

                if rs == word1:
                    if len(word1) > len(word2):
                        output.append("Long")
                    else:
                        output.append("Short")
                elif rs == word2:
                    if len(word1) > len(word2):
                        output.append("Short")
                    else:
                        output.append("Long")
                else:
                    output.append("Other")

                '''Exp4'''

            elif summaries_df["Experiment"][i] == "E4":
                try:
                    meaning_word = rs.split(";")[4].replace(" ", '')
                except IndexError:
                    output.append("Other")
                    continue
                except Exception as e:
                    print(f"Unexpected error: {e}")
                    output.append("Other")
                    continue
                meaning_word = meaning_word.replace('.', '')
                meaning_word = meaning_word.replace(';', '')
                target = summaries_df["Factor 2"][i].strip().lower()
                pair = target + "_" + meaning_word
                print("E4:", pair)

                if pair in wordpair2code.keys():
                    output.append(wordpair2code[pair])
                else:
                    output.append("Other")

                '''Exp5'''
            elif summaries_df["Experiment"][i] == "E5" or summaries_df["Experiment"][i] == "E51":
                # sentence = summaries_df["Response"][i].strip()
                item_id = summaries_df["Item"][i]
                question_id = summaries_df["Question_ID"][i]

                sti1, sti2 = "", ""

                if summaries_df["Experiment"][i] == "E51":
                    sti1 = Stimuli1[question_id[0:-1]].lower().replace("...", "")
                    sti2 = Stimuli2[question_id[0:-1]].lower().replace("...", "")
                    verb = item2verb1[item_id].lower()

                    sentence = sti1 + " " + rs.replace(sti1, "")
                    print("E5", verb, sentence)
                if summaries_df["Experiment"][i] == "E5":
                    sti1 = Stimuli1[question_id].lower().replace("...", "")
                # print(sti1)
                    sti2 = Stimuli2[question_id].lower().replace("...", "")

                    verb = item2verb2[item_id].lower()
                    sentence = sti2.replace("...","") + " " + rs.replace(sti2, "")
                    print("E5", verb, sentence)


                doc = nlp1(sentence.replace("  "," "))
                # print(doc)
                # print()
                verb_token = None
                for token in doc:
                    # print(token.lemma_)
                    if token.lemma_ == verb:
                        verb_token = token
                        break
                # exit()
                if verb_token is None:
                    output.append("Other")
                    print("E5 The target verb is missing from the sentence.")
                else:
                    pobj, dative = None, None
                    # print(verb_token.children)
                    # exit()
                    for child in verb_token.children:
                        print(child)
                        if (child.dep_ == 'dative' and child.pos_ == "ADP") or (child.text == "to" and child.dep_ == 'prep' and child.pos_ == "ADP"):
                            pobj = child.text
                        if child.dep_ == 'dative':
                            dative = child.text
                    print("E5", pobj, dative)
                    # exit()

                    if pobj:
                        output.append("PO")
                    elif dative:
                        output.append("DO")
                    else:
                        print("Other", sentence, pobj, dative)
                        # exit()
                        output.append("Other")

                '''Exp6'''

            elif summaries_df["Experiment"][i] == "E6":
                sentence = summaries_df["Stimuli 1"][i].strip().lower()
                print("E6", sentence)
                doc = nlp1(sentence)
                subject = "None"
                obj = "None"
                for token in doc:
                    if token.dep_ == "nsubj":
                        subject = token.text
                    elif token.dep_ == "dobj":
                        obj = token.text
                print("E6", subject, obj)
                if subject in rs and obj in rs:
                    print(rs, subject, obj, "Other")
                    output.append("Other")
                elif subject in rs:
                    print(rs, subject, obj, "VP")
                    output.append("VP")
                elif obj in rs:
                    print(rs, subject, obj, "NP")
                    output.append("NP")
                else:
                    print(rs, subject, obj, "Other")
                    output.append("Other")




                '''Exp7'''
            elif summaries_df["Experiment"][i] == "E7":
            # Remove periods and commas, then convert to lowercase
                rs = rs.replace(".", "").replace(",", "").lower()
                print("E7", rs)

                # Split the response into words
                words = rs.split(' ')
                found = False

                for word in words:
                    if word == "no":
                        output.append("0")
                        found = True
                        break
                    elif word == "yes":
                        output.append("1")
                        found = True
                        break
                if not found:
                    output.append("Other")

                '''Exp8'''
            elif summaries_df["Experiment"][i] == "E8":
                # rs = summaries_df["Response"][i].strip()
                print("E8",rs)
                if "something is wrong with the question" in rs:
                    output.append("1")
                else:
                    output.append("0")

                '''Exp9'''
            elif summaries_df["Experiment"][i] == "E9":
                male, female = 0, 0

                # rs = summaries_df["Response"][i].strip()
                if "because" in rs:
                    rs = rs.replace("because because","because").split("because")[1]
                else:
                    rs = rs
                condition = summaries_df["Factor 2"][i].strip()
                rs = rs.split(" ")
                for w in rs:
                    if w in male_keyword and female != 1:
                        male = 1
                        break
                    if w in female_keyword and male != 1:
                        female = 1
                        break
                print("E9", "condition", condition, "male", male, "female", female)
                if  male == 0 and female == 0:
                    output.append('Other')
                else:
                    if male == 1 and female==0:
                        if condition == "MF":
                            output.append("Subject")
                        elif condition == "FM":
                            output.append("Object")
                        else:
                            output.append("Other")
                    elif female == 1 and male ==0:
                        if condition == "MF":
                            output.append("Object")
                        elif condition == "FM":
                            output.append("Subject")
                        else:
                            output.append("Other")

                '''Exp10'''
            elif summaries_df["Experiment"][i] == "E10":
                # Remove periods from the response
                rs = rs.replace(".", "").lower()  # Convert to lowercase to ensure case-insensitivity
                print("E10", rs)

                # Check if the response contains "yes"
                if "yes" in rs:
                    output.append("1")
                else:
                    output.append("0")
            else:
                print("can’t find the Exp:", summaries_df["Experiment"][i])
                output.append("NA")
            # print(output)
        # exit()
        '''human'''
        # self.data = pd.DataFrame(list(zip(summaries_df["Experiment"], summaries_df["Question_ID"], summaries_df["Item"],  summaries_df["Response"], summaries_df["Factor 2"], summaries_df["Stimuli 1"], summaries_df["Coding"], output)),
        #                                     columns=["Experiment", "Question_ID", "Item",  "Response", "Factor 2", "Simulate 1","Original_Coding","Coding"])
        '''LLM'''
        self.data = pd.DataFrame(list(zip(summaries_df["Experiment"], summaries_df["Question_ID"], summaries_df["Item"],  summaries_df["Response"], summaries_df["Factor 2"], summaries_df["Stimuli 1"], output)),
                                            columns=["Experiment", "Question_ID", "Item",  "Response", "Factor 2", "Simulate 1","Coding"])
        print(self.data.head())

        return self.data







    def calculate_js_divergence(self, file_path_1, file_path_2):
        """
        Calculate the Jensen-Shannon divergence for response distributions between two datasets.
        - Extracts E5 and E51 pairs, creates new data based on comparison,
        removes the original E5 and E51, and then calculates the JS divergence between the datasets.

        Parameters:
        file_path_1 (str): Path to the first dataset file (Excel format).
        file_path_2 (str): Path to the second dataset file (CSV format).

        Returns:
        float: The average JS divergence across all common Question_IDs.
        """
        # Load the datasets
        human_df = pd.read_csv(file_path_1, encoding='ISO-8859-1')
        llm_df = pd.read_csv(file_path_2)

        def create_e5_entries(df):
            new_entries = []
            for i in range(len(df) - 1):
                if 'E51' in df.iloc[i]['Experiment']:
                    priming_id = df.iloc[i][0]-1
                    priming_row_id = df[df.iloc[:, 0] == priming_id].index[0]
                    new_question_id = df.iloc[priming_row_id]['Question_ID']
                    label = 1 if df.iloc[i]['Coding'] == df.iloc[priming_row_id]['Coding'] else 0
                    new_entries.append({
                        'Question_ID': new_question_id,
                        'Response': f'{df.iloc[i]["Coding"]}-{df.iloc[priming_row_id]["Coding"]}',
                        'Coding': label
                    })
            return pd.DataFrame(new_entries)

        # Create new E5 entries for both datasets
        human_e5 = create_e5_entries(human_df)
        llm_e5 = create_e5_entries(llm_df)

        # Remove E5 and E51 entries from both datasets
        human_df = human_df[~human_df['Question_ID'].str.contains('E5')]
        llm_df = llm_df[~llm_df['Question_ID'].str.contains('E5')]

        # Append new E5 entries to the cleaned dataframes
        human_df = pd.concat([human_df, human_e5], ignore_index=True)
        llm_df = pd.concat([llm_df, llm_e5], ignore_index=True)


        ### Calculate Average JS Divergence ###

        # Extract the relevant columns for JS divergence calculation
        human_responses = human_df[['Question_ID', 'Coding']]
        llm_responses = llm_df[['Question_ID', 'Coding']]

        # Get unique Question_IDs present in both datasets
        common_question_ids = set(human_responses['Question_ID']).intersection(set(llm_responses['Question_ID']))

        # Initialize a dictionary to store JS divergence for each experiment
        js_divergence = {}

        # Calculate JS divergence for each common Question_ID
        for q_id in common_question_ids:
            # Get response distributions for the current Question_ID in both datasets
            human_dist = human_responses[human_responses['Question_ID'] == q_id]['Coding'].value_counts(
                normalize=True)
            llm_dist = llm_responses[llm_responses['Question_ID'] == q_id]['Coding'].value_counts(normalize=True)

            # Reindex the distributions to have the same index, filling missing values with 0
            all_responses = set(human_dist.index).union(set(llm_dist.index))
            human_dist = human_dist.reindex(all_responses, fill_value=0)
            llm_dist = llm_dist.reindex(all_responses, fill_value=0)

            # Calculate JS divergence
            js_div = jensenshannon(human_dist, llm_dist, base=2)
            experiment_id = q_id.split('_')[1]

            if experiment_id not in js_divergence:
                js_divergence[experiment_id] = []
            js_divergence[experiment_id].append(js_div)

        # Calculate the average JS divergence per experiment and the confidence interval
        results = {}
        for exp, divs in js_divergence.items():
            avg_js_divergence = 1 - np.nanmean(divs)
            ci_lower, ci_upper = bootstrap((divs,), np.nanmean, confidence_level=0.95,
                                           n_resamples=1000).confidence_interval
            results[exp] = {
                'average_js_divergence': avg_js_divergence,
                'confidence_interval': (1 - ci_upper, 1 - ci_lower)  # Adjust for 1 - score
            }

        # Calculate the overall average JS divergence and confidence interval
        overall_js_divergence = 1 - np.nanmean([js for divs in js_divergence.values() for js in divs])
        flattened_js_divergence = np.concatenate([np.array(divs) for divs in js_divergence.values()])

        # 计算总体的置信区间
        overall_ci_lower, overall_ci_upper = bootstrap(
            (flattened_js_divergence,),
            np.nanmean,
            confidence_level=0.95,
            n_resamples=1000
        ).confidence_interval

        # Combine all results into one dictionary
        all_results = {
            'overall': {
                'average_js_divergence': overall_js_divergence,
                'confidence_interval': (1 - overall_ci_upper, 1 - overall_ci_lower)
            },
            'per_experiment': results
        }

        return all_results

        # ### Calculate Average JS Divergence ###
        #
        # # Extract the relevant columns for JS divergence calculation
        # human_responses = human_df[['Question_ID', 'Coding']]
        # llm_responses = llm_df[['Question_ID', 'Coding']]
        #
        # # Get unique Question_IDs present in both datasets
        # common_question_ids = set(human_responses['Question_ID']).intersection(set(llm_responses['Question_ID']))
        #
        # # Initialize a list to store JS divergence for each Question_ID
        # js_divergence_list = []
        # js_divergence ={}
        #
        # # Calculate JS divergence for each common Question_ID
        # for q_id in common_question_ids:
        #     # Get response distributions for the current Question_ID in both datasets
        #     human_dist = human_responses[human_responses['Question_ID'] == q_id]['Coding'].value_counts(normalize=True)
        #     llm_dist = llm_responses[llm_responses['Question_ID'] == q_id]['Coding'].value_counts(normalize=True)
        #
        #     # Reindex the distributions to have the same index, filling missing values with 0
        #     all_responses = set(human_dist.index).union(set(llm_dist.index))
        #     human_dist = human_dist.reindex(all_responses, fill_value=0)
        #     llm_dist = llm_dist.reindex(all_responses, fill_value=0)
        #
        #     # Calculate JS divergence and add to the list
        #     js_div = jensenshannon(human_dist, llm_dist, base=2)
        #     experiment_id = q_id.split('_')[1]
        #     if experiment_id not in js_divergence:
        #         js_divergence[experiment_id] = []
        #     js_divergence[experiment_id].append(js_div)
        #
        #     js_divergence_list.append(js_div)
        #     #js_divergence[q_id] = js_div
        #
        #
        #
        # # Calculate the average JS divergence
        # # JS per experiment
        # avg_js_divergence_per_experiment = {exp: 1- np.nanmean(divs) for exp, divs in js_divergence.items()}
        # print(avg_js_divergence_per_experiment)
        #
        # # JS overall
        # avg_js_divergence = 1 - np.nanmean(js_divergence_list)
        # print("avg_js_divergence:", avg_js_divergence)
        #
        # return avg_js_divergence


    def evaluate_humanlike(self, summaries_df: object, human_data_path: object, result_save_path: object) -> object:
        '''
        evaluate humanlike score
        1. code the result
        2. comput the similaritirs between human and model
        process model responses'''

        '''coding human data'''
        # self.huamn_df = pd.read_csv(human_data_path)
        # self.data = self.code_results(self.huamn_df)
        #save_path = human_data_path.replace('.csv','_coding.csv')
        #human_save_path =  "./src/datasets/coding_human.xlsx"
        # if save_path is not None:
        #     print(f'Save human coding results to {save_path}')
        #     fpath = Path(save_path)
        #     fpath.parent.mkdir(parents=True, exist_ok=True)
        #     self.data.to_csv(fpath)


        '''coding llm data'''
        save_path = result_save_path.replace('.csv','_coding.csv')
        self.llm_df = self.code_results_llm(summaries_df)



        if save_path is not None:
            print(f'Save LLM coding results to {save_path}')
            fpath = Path(save_path)
            fpath.parent.mkdir(parents=True, exist_ok=True)
            self.llm_df.to_csv(fpath)

        envs.API.upload_file(
            path_or_fileobj= save_path,#./generation_results/meta-llama/Llama-2-13b-chat-hf_coding.csv
            path_in_repo=f"{save_path.replace('generation_results/','')}",#
            repo_id=envs.RESULTS_REPO,
            repo_type="dataset",
        )
        # file_path_1 = '/Users/simon/Downloads/coding_human.xlsx'
        # file_path_2 = '/Users/simon/Downloads/Meta-Llama-3.1-70B-Instruct_coding.csv'
        avg_js_divergence = self.calculate_js_divergence(human_data_path, save_path)

        return avg_js_divergence



















    def evaluate_hallucination(self, summaries_df):
        """
        Evaluate the hallucination rate in summaries. Updates the 'scores' attribute 
        of the instance with the computed scores.

        Args:
            summaries_df (DataFrame): DataFrame containing source docs and summaries.

        Returns:
            list: List of hallucination scores. Also updates the 'scores' attribute of the instance.
        """
        hem_scores = []
        sources = []
        summaries = []
        source_summary_pairs = util.create_pairs(summaries_df)
        '''评价模型结果'''
        for doc, summary in tqdm(source_summary_pairs, desc="Evaluating Humanlikeness"):
            if util.is_summary_valid(summary):
                try:
                    summary = summary.replace('<bos>','').replace('<eos>','')
                    score = self.model.predict([doc, summary])# [0]
                    if not isinstance(score, float):
                        try:
                            score = score.item()
                        except:
                            logging.warning(f"Score type mismatch: Expected float, got {type(score)}.")
                            continue
                    hem_scores.append(score)
                    sources.append(doc)
                    summaries.append(summary)
                except Exception as e:
                    logging.error(f"Error while running HEM: {e}")
                    raise

        self.scores = hem_scores
        eval_results = {'source': sources, 'summary': summaries, 'HEM scores': hem_scores}
        return hem_scores, eval_results
        # for doc, summary in tqdm(source_summary_pairs, desc="Evaluating hallucinations"):
        #     if util.is_summary_valid(summary):
        #         try:
        #             # summary_pieces = summary.split('\n')
        #             # summary = summary_pieces[0] if len(summary_pieces[0].strip()) > 0 else summary_pieces[1]
        #             summary = summary.replace('<bos>','').replace('<eos>','')
        #             # print([doc, summary])
        #             # print(self.model.predict([doc, summary]))
        #             score = self.model.predict([doc, summary])# [0]
        #             if not isinstance(score, float):
        #                 try:
        #                     score = score.item()
        #                 except:
        #                     logging.warning(f"Score type mismatch: Expected float, got {type(score)}.")
        #                     continue
        #             hem_scores.append(score)
        #             sources.append(doc)
        #             summaries.append(summary)
        #         except Exception as e:
        #             logging.error(f"Error while running HEM: {e}")
        #             raise

        # self.scores = hem_scores
        # eval_results = {'source': sources, 'summary': summaries, 'HEM scores': hem_scores}
        # return hem_scores, eval_results


    def compute_factual_consistency_rate(self, threshold=0.5):
        """
        Compute the factual consistency rate of the evaluated summaries based on
        the previously calculated scores. This method relies on the 'scores'
        attribute being populated, typically via the 'evaluate_hallucination' method.

        Returns:
            float: Factual Consistency Rate. Also updates the 'factual_consistency_rate'
            and 'hallucination_rate' attributes of the instance.

        Raises:
            ValueError: If scores have not been calculated prior to calling this method.
        """
        if not self.scores:
            error_msg = "Scores not calculated. Call evaluate_hallucination() first."
            logging.error(error_msg)
            raise ValueError(error_msg)

        # Use threshold of 0.5 to compute factual_consistency_rate
        num_above_threshold = sum(score >= threshold for score in self.scores)
        num_total = len(self.scores)

        if not num_total:
            raise ValueError("No scores available to compute factual consistency rate.")

        self.factual_consistency_rate = (num_above_threshold / num_total) * 100
        self.hallucination_rate = 100 - self.factual_consistency_rate

        return self.factual_consistency_rate