Spaces:
Sleeping
Sleeping
import logging | |
import gradio as gr | |
import pandas as pd | |
from apscheduler.schedulers.background import BackgroundScheduler | |
from huggingface_hub import snapshot_download | |
import src.envs as envs | |
from main_backend import PENDING_STATUS, RUNNING_STATUS, FINISHED_STATUS, FAILED_STATUS | |
from src.backend import sort_queue | |
from src.envs import EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, RESULTS_REPO | |
import src.backend.manage_requests as manage_requests | |
import socket | |
import src.display.about as about | |
from src.display.css_html_js import custom_css | |
import src.display.utils as utils | |
import src.populate as populate | |
from src.populate import get_evaluation_queue_df, get_leaderboard_df | |
import src.submission.submit as submit | |
import os | |
import datetime | |
import spacy_transformers | |
import pprint | |
import src.backend.run_eval_suite as run_eval_suite | |
pp = pprint.PrettyPrinter(width=80) | |
TOKEN = os.environ.get("H4_TOKEN", None) | |
print("TOKEN", TOKEN) | |
def ui_snapshot_download(repo_id, local_dir, repo_type, tqdm_class, etag_timeout): | |
try: | |
print("local",local_dir) | |
snapshot_download(repo_id=repo_id, local_dir=local_dir, repo_type=repo_type, tqdm_class=tqdm_class, etag_timeout=etag_timeout) | |
except Exception as e: | |
restart_space() | |
def restart_space(): | |
envs.API.restart_space(repo_id=envs.REPO_ID, token=TOKEN) | |
def init_space(): | |
#dataset_df = get_dataset_summary_table(file_path='blog/Hallucination-Leaderboard-Summary.csv') | |
ui_snapshot_download(repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30) | |
ui_snapshot_download(repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30) | |
original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, utils.COLS, utils.BENCHMARK_COLS) | |
finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = get_evaluation_queue_df(EVAL_REQUESTS_PATH, utils.EVAL_COLS) | |
return original_df, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df | |
original_df, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = init_space() | |
leaderboard_df = original_df.copy() | |
def process_pending_evals(): | |
current_pending_status = [PENDING_STATUS] | |
print('_________________') | |
manage_requests.check_completed_evals( | |
api=envs.API, | |
checked_status=RUNNING_STATUS, | |
completed_status=FINISHED_STATUS, | |
failed_status=FAILED_STATUS, | |
hf_repo=envs.QUEUE_REPO, | |
local_dir=envs.EVAL_REQUESTS_PATH_BACKEND, | |
hf_repo_results=envs.RESULTS_REPO, | |
local_dir_results=envs.EVAL_RESULTS_PATH_BACKEND | |
) | |
logging.info("Checked completed evals") | |
eval_requests = manage_requests.get_eval_requests( | |
job_status=current_pending_status, | |
hf_repo=envs.QUEUE_REPO, | |
local_dir=envs.EVAL_REQUESTS_PATH_BACKEND | |
) | |
logging.info("Got eval requests") | |
eval_requests = sort_queue.sort_models_by_priority(api=envs.API, models=eval_requests) | |
logging.info("Sorted eval requests") | |
print(f"Found {len(eval_requests)} {','.join(current_pending_status)} eval requests") | |
if len(eval_requests) == 0: | |
print("No eval requests found. Exiting.") | |
return | |
import concurrent.futures | |
def process_eval_request(eval_request): | |
pp.pprint(eval_request) | |
run_eval_suite.run_evaluation( | |
eval_request=eval_request, | |
local_dir=envs.EVAL_RESULTS_PATH_BACKEND, | |
results_repo=envs.RESULTS_REPO, | |
batch_size=1, | |
device=envs.DEVICE, | |
no_cache=True, | |
need_check=False, | |
write_results=False | |
) | |
logging.info(f"Eval finished for model {eval_request.model}, now setting status to finished") | |
# Update the status to FINISHED | |
manage_requests.set_eval_request( | |
api=envs.API, | |
eval_request=eval_request, | |
new_status=FINISHED_STATUS, | |
hf_repo=envs.QUEUE_REPO, | |
local_dir=envs.EVAL_REQUESTS_PATH_BACKEND | |
) | |
# 定义线程池的数量 | |
max_workers = 5 # 你可以根据你的需求设置合适的数量 | |
# 使用 ThreadPoolExecutor 来并行执行多个 eval_request | |
with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor: | |
futures = [executor.submit(process_eval_request, eval_request) for eval_request in eval_requests] | |
# 等待所有任务完成 | |
concurrent.futures.wait(futures) | |
# for eval_request in eval_requests: | |
# pp.pprint(eval_request) | |
# run_eval_suite.run_evaluation( | |
# eval_request=eval_request, | |
# local_dir=envs.EVAL_RESULTS_PATH_BACKEND, | |
# results_repo=envs.RESULTS_REPO, | |
# batch_size=1, | |
# device=envs.DEVICE, | |
# no_cache=True, | |
# need_check= False, | |
# write_results= False | |
# ) | |
# logging.info(f"Eval finished for model {eval_request.model}, now setting status to finished") | |
# | |
# # Update the status to FINISHED | |
# manage_requests.set_eval_request( | |
# api=envs.API, | |
# eval_request=eval_request, | |
# new_status=FINISHED_STATUS, | |
# hf_repo=envs.QUEUE_REPO, | |
# local_dir=envs.EVAL_REQUESTS_PATH_BACKEND | |
# ) | |
# Searching and filtering | |
def update_table( | |
hidden_df: pd.DataFrame, | |
columns: list, | |
#type_query: list, | |
precision_query: str, | |
size_query: list, | |
show_deleted: bool, | |
query: str, | |
): | |
# filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted) | |
filtered_df = filter_models(hidden_df, size_query, precision_query, show_deleted) | |
filtered_df = filter_queries(query, filtered_df) | |
df = select_columns(filtered_df, columns) | |
return df | |
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame: | |
return df[(df[utils.AutoEvalColumn.dummy.name].str.contains(query, case=False))] | |
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame: | |
always_here_cols = [ | |
#utils.AutoEvalColumn.model_type_symbol.name, | |
utils.AutoEvalColumn.model.name, | |
] | |
# We use COLS to maintain sorting | |
filtered_df = df[ | |
always_here_cols + [c for c in utils.COLS if c in df.columns and c in columns] + [utils.AutoEvalColumn.dummy.name] | |
] | |
return filtered_df | |
def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame: | |
final_df = [] | |
if query != "": | |
queries = [q.strip() for q in query.split(";")] | |
for _q in queries: | |
_q = _q.strip() | |
if _q != "": | |
temp_filtered_df = search_table(filtered_df, _q) | |
if len(temp_filtered_df) > 0: | |
final_df.append(temp_filtered_df) | |
if len(final_df) > 0: | |
filtered_df = pd.concat(final_df) | |
filtered_df = filtered_df.drop_duplicates( | |
subset=[utils.AutoEvalColumn.model.name, utils.AutoEvalColumn.precision.name, utils.AutoEvalColumn.revision.name] | |
) | |
return filtered_df | |
def filter_models( | |
# df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool | |
df: pd.DataFrame, size_query: list, precision_query: list, show_deleted: bool | |
) -> pd.DataFrame: | |
# Show all models | |
# if show_deleted: | |
# filtered_df = df | |
# else: # Show only still on the hub models | |
# filtered_df = df[df[utils.AutoEvalColumn.still_on_hub.name]] | |
filtered_df = df | |
# type_emoji = [t[0] for t in type_query] | |
#filtered_df = filtered_df.loc[df[utils.AutoEvalColumn.model_type_symbol.name].isin(type_emoji)] | |
filtered_df = filtered_df.loc[df[utils.AutoEvalColumn.precision.name].isin(precision_query + ["None"])] | |
numeric_interval = pd.IntervalIndex(sorted([utils.NUMERIC_INTERVALS[s] for s in size_query])) | |
params_column = pd.to_numeric(df[utils.AutoEvalColumn.params.name], errors="coerce") | |
mask = params_column.apply(lambda x: any(numeric_interval.contains(x))) | |
filtered_df = filtered_df.loc[mask] | |
return filtered_df | |
try: | |
demo = gr.Blocks(css=custom_css) | |
with demo: | |
gr.HTML(about.TITLE) | |
gr.Markdown(about.INTRODUCTION_TEXT, elem_classes="markdown-text") | |
with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0): | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
search_bar = gr.Textbox( | |
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...", | |
show_label=False, | |
elem_id="search-bar", | |
) | |
with gr.Row(): | |
shown_columns = gr.CheckboxGroup( | |
choices=[ | |
c.name | |
for c in utils.fields(utils.AutoEvalColumn) | |
if not c.hidden and not c.never_hidden and not c.dummy | |
], | |
value=[ | |
c.name | |
for c in utils.fields(utils.AutoEvalColumn) | |
if c.displayed_by_default and not c.hidden and not c.never_hidden | |
], | |
label="Select columns to show", | |
elem_id="column-select", | |
interactive=True, | |
) | |
with gr.Row(): | |
deleted_models_visibility = gr.Checkbox( | |
value=False, label="Show gated/private/deleted models", interactive=True | |
) | |
with gr.Column(min_width=320): | |
#with gr.Box(elem_id="box-filter"): | |
# filter_columns_type = gr.CheckboxGroup( | |
# label="Model types", | |
# choices=[t.to_str() for t in utils.ModelType], | |
# value=[t.to_str() for t in utils.ModelType], | |
# interactive=True, | |
# elem_id="filter-columns-type", | |
# ) | |
filter_columns_precision = gr.CheckboxGroup( | |
label="Precision", | |
choices=[i.value.name for i in utils.Precision], | |
value=[i.value.name for i in utils.Precision], | |
interactive=True, | |
elem_id="filter-columns-precision", | |
) | |
filter_columns_size = gr.CheckboxGroup( | |
label="Model sizes (in billions of parameters)", | |
choices=list(utils.NUMERIC_INTERVALS.keys()), | |
value=list(utils.NUMERIC_INTERVALS.keys()), | |
interactive=True, | |
elem_id="filter-columns-size", | |
) | |
leaderboard_table = gr.components.Dataframe( | |
value=leaderboard_df[ | |
[c.name for c in utils.fields(utils.AutoEvalColumn) if c.never_hidden] | |
+ shown_columns.value | |
+ [utils.AutoEvalColumn.dummy.name] | |
].sort_values(by="Overall Humanlike %", ascending=False), | |
headers=[c.name for c in utils.fields(utils.AutoEvalColumn) if c.never_hidden] + shown_columns.value, | |
datatype=utils.TYPES, | |
elem_id="leaderboard-table", | |
interactive=False, | |
visible=True, | |
column_widths=["33%", "33%"] | |
) | |
# Dummy leaderboard for handling the case when the user uses backspace key | |
hidden_leaderboard_table_for_search = gr.components.Dataframe( | |
value=original_df[utils.COLS], | |
headers=utils.COLS, | |
datatype=utils.TYPES, | |
visible=False, | |
) | |
search_bar.submit( | |
update_table, | |
[ | |
hidden_leaderboard_table_for_search, | |
shown_columns, | |
#filter_columns_type, | |
filter_columns_precision, | |
filter_columns_size, | |
deleted_models_visibility, | |
search_bar, | |
], | |
leaderboard_table, | |
) | |
# for selector in [shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size, deleted_models_visibility]: | |
for selector in [shown_columns, filter_columns_precision, filter_columns_size, deleted_models_visibility]: | |
selector.change( | |
update_table, | |
[ | |
hidden_leaderboard_table_for_search, | |
shown_columns, | |
#filter_columns_type, | |
filter_columns_precision, | |
filter_columns_size, | |
deleted_models_visibility, | |
search_bar, | |
], | |
leaderboard_table, | |
queue=True, | |
) | |
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2): | |
gr.Markdown(about.LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") | |
with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3): | |
with gr.Column(): | |
with gr.Row(): | |
gr.Markdown(about.EVALUATION_QUEUE_TEXT, elem_classes="markdown-text") | |
with gr.Column(): | |
with gr.Accordion( | |
f"✅ Finished Evaluations ({len(finished_eval_queue_df)})", | |
open=False, | |
): | |
with gr.Row(): | |
finished_eval_table = gr.components.Dataframe( | |
value=finished_eval_queue_df, | |
headers=utils.EVAL_COLS, | |
datatype=utils.EVAL_TYPES, | |
row_count=5, | |
) | |
with gr.Accordion( | |
f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})", | |
open=False, | |
): | |
with gr.Row(): | |
running_eval_table = gr.components.Dataframe( | |
value=running_eval_queue_df, | |
headers=utils.EVAL_COLS, | |
datatype=utils.EVAL_TYPES, | |
row_count=5, | |
) | |
with gr.Accordion( | |
f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})", | |
open=False, | |
): | |
with gr.Row(): | |
pending_eval_table = gr.components.Dataframe( | |
value=pending_eval_queue_df, | |
headers=utils.EVAL_COLS, | |
datatype=utils.EVAL_TYPES, | |
row_count=5, | |
) | |
with gr.Row(): | |
gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text") | |
with gr.Row(): | |
with gr.Column(): | |
model_name_textbox = gr.Textbox(label="Model name") | |
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main") | |
model_type = gr.Dropdown( | |
choices=[t.to_str(" : ") for t in utils.ModelType if t != utils.ModelType.Unknown], | |
label="Model type", | |
multiselect=False, | |
value=None, | |
interactive=True, | |
) | |
with gr.Column(): | |
precision = gr.Dropdown( | |
choices=[i.value.name for i in utils.Precision if i != utils.Precision.Unknown], | |
label="Precision", | |
multiselect=False, | |
value="float16", | |
interactive=True, | |
) | |
weight_type = gr.Dropdown( | |
choices=[i.value.name for i in utils.WeightType], | |
label="Weights type", | |
multiselect=False, | |
value="Original", | |
interactive=True, | |
) | |
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)") | |
submit_button = gr.Button("Submit Eval") | |
submission_result = gr.Markdown() | |
submit_button.click( | |
submit.add_new_eval, | |
[ | |
model_name_textbox, | |
base_model_name_textbox, | |
revision_name_textbox, | |
precision, | |
weight_type, | |
model_type, | |
], | |
submission_result, | |
) | |
with gr.Row(): | |
with gr.Accordion("📙 Citation", open=False): | |
citation_button = gr.Textbox( | |
value=about.CITATION_BUTTON_TEXT, | |
label=about.CITATION_BUTTON_LABEL, | |
lines=20, | |
elem_id="citation-button", | |
show_copy_button=True, | |
) | |
except Exception as e: | |
print(e) | |
( | |
finished_eval_queue_df, | |
running_eval_queue_df, | |
pending_eval_queue_df, | |
) = populate.get_evaluation_queue_df(envs.EVAL_REQUESTS_PATH, utils.EVAL_COLS) | |
def background_init_and_process(): | |
global original_df, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df | |
original_df, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = init_space() | |
process_pending_evals() | |
scheduler = BackgroundScheduler() | |
scheduler.add_job(background_init_and_process, 'date', run_date=datetime.datetime.now()) # 立即执行 | |
scheduler.add_job(restart_space, "interval", seconds=1720000) | |
scheduler.start() | |
demo.queue(default_concurrency_limit=40).launch() |