XufengDuan's picture
update scripts
7db1281
raw
history blame
9.5 kB
import glob
import json
import os
from dataclasses import dataclass
import numpy as np
import dateutil
import src.display.formatting as formatting
import src.display.utils as utils
import src.submission.check_validity as check_validity
@dataclass
class EvalResult:
eval_name: str # org_model_precision (uid)
full_model: str # org/model (path on hub)
org: str
model: str
revision: str # commit hash, "" if main
results: dict
precision: utils.Precision = utils.Precision.Unknown
model_type: utils.ModelType = utils.ModelType.Unknown # Pretrained, fine tuned, ...
weight_type: utils.WeightType = utils.WeightType.Original # Original or Adapter
architecture: str = "Unknown"
license: str = "?"
likes: int = 0
num_params: int = 0
date: str = "" # submission date of request file
still_on_hub: bool = False
@classmethod
def init_from_json_file(self, json_filepath):
"""Inits the result from the specific model result file"""
with open(json_filepath) as fp:
data = json.load(fp)
print('json_filepath',json_filepath)
print(data)
config = data.get("config")
print(config)
# Precision
precision = utils.Precision.from_str(config.get("model_dtype"))
# Get model and org
full_model = config.get("model_name", config.get("model_args", None))
org, model = full_model.split("/", 1) if "/" in full_model else (None, full_model)
if org:
result_key = f"{org}_{model}_{precision.value.name}"
else:
result_key = f"{model}_{precision.value.name}"
still_on_hub, _, model_config = check_validity.is_model_on_hub(
full_model, config.get("model_sha", "main"), trust_remote_code=True,
test_tokenizer=False)
if model_config:
architecture = ";".join(getattr(model_config, "architectures", ["?"]))
else:
architecture = "?"
# Extract results available in this file (some results are split in several files)
results = {}
for task in utils.Tasks:
#print(task)
task = task.value
#print(task.benchmark)
#print(task.metric)
#print(task.col_name)
#print(task.value)
if isinstance(task.metric, str):
# accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if
# task.benchmark == k and isinstance(v, dict)])
# accs = np.array([np.around(v*100, decimals=0) for k, v in data["results"].items() if task.benchmark == k])
accs = []
import math
for k, v in data["results"].items():
if task.benchmark == k:
if isinstance(v, (int, float)) and not math.isnan(v):
accs.append(np.around(v * 100, decimals=1))
elif isinstance(v, list):
accs.extend([np.around(x * 100, decimals=1) for x in v if
isinstance(x, (int, float)) and not math.isnan(x)])
else:
# 跳过 NaN 或不符合条件的值
accs.append(None)
accs = np.array([x for x in accs if x is not None])
accs = accs[accs != None]
results[task.benchmark] = accs
elif isinstance(task.metric, list):
accs = np.array([str(v.get(task.metric, None)) for k, v in data["results"].items() if
task.benchmark == k and isinstance(v, dict)])
accs = accs[accs != None]
results[task.benchmark] = accs
else:
print(f"Skipping task with unhandled metric type: {type(task.metric)}")
# # We average all scores of a given metric (not all metrics are present in all files)
# accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark == k])
#
# results[task.benchmark] = accs
return self(
eval_name=result_key,
full_model=full_model,
org=org,
model=model,
results=results,
precision=precision,
revision= config.get("model_sha", ""),
still_on_hub=still_on_hub,
architecture=architecture
)
def update_with_request_file(self, requests_path):
"""Finds the relevant request file for the current model and updates info with it"""
all_files_before = os.listdir(requests_path)
print("test the variable:", all_files_before)
# print(self.full_model)
#print(self.precision.value.name)
request_file = get_request_file_for_model(requests_path, self.full_model)
# print("file name:",request_file)
#all_files = os.listdir(request_file)
#print("Files in the folder:", all_files)
try:
with open(request_file, "r") as f:
request = json.load(f)
print(request)
self.model_type = utils.ModelType.from_str(request.get("model_type", ""))
#self.weight_type = utils.WeightType[request.get("weight_type", "Original")]
self.license = request.get("license", "?")
self.likes = request.get("likes", 0)
self.num_params = int(float(request.get("params", "0").replace('B', '')))
self.date = request.get("submitted_time", "")
# print(self.license)
print('updated:', self)
except FileNotFoundError:
print(f"Could not find request file for {self.org}/{self.model}")
except json.JSONDecodeError:
print(f"Error decoding JSON in request file for {self.org}/{self.model}")
def to_dict(self):
"""Converts the Eval Result to a dict compatible with our dataframe display"""
data_dict = {
"eval_name": self.eval_name, # not a column, just a save name,
# utils.AutoEvalColumn.precision.name: self.precision.value.name,
# utils.AutoEvalColumn.model_type.name: self.model_type.value.name,
#utils.AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
# utils.AutoEvalColumn.weight_type.name: self.weight_type.value.name,
# utils.AutoEvalColumn.architecture.name: self.architecture,
utils.AutoEvalColumn.model.name: formatting.make_clickable_model(self.full_model),
utils.AutoEvalColumn.dummy.name: self.full_model,
# utils.AutoEvalColumn.revision.name: self.revision,
utils.AutoEvalColumn.license.name: self.license,
utils.AutoEvalColumn.likes.name: self.likes,
utils.AutoEvalColumn.params.name: self.num_params,
# utils.AutoEvalColumn.still_on_hub.name: self.still_on_hub,
}
for task in utils.Tasks:
data_dict[task.value.col_name] = self.results[task.value.benchmark]
return data_dict
def get_request_file_for_model(requests_path, model_name):
"""Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
request_files = os.path.join(
requests_path,
f"{model_name}.json",
)
#request_files = glob.glob(request_files)
# Select correct request file (precision)
# request_file = ""
# request_files = sorted(request_files, reverse=True)
# for tmp_request_file in request_files:
# with open(tmp_request_file, "r") as f:
# req_content = json.load(f)
# # if (
# # req_content["status"] in ["FINISHED"]
# # and req_content["precision"] == precision.split(".")[-1]
# # ):
# # request_file = tmp_request_file
return request_files
def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]:
"""From the path of the results folder root, extract all needed info for results"""
model_result_filepaths = []
print("results_path", results_path)
for root, _, files in os.walk(results_path):
print("file",files)
for f in files:
if f.endswith(".json"):
model_result_filepaths.extend([os.path.join(root, f)])
# print("model_result_filepaths:", model_result_filepaths)
# exit()
eval_results = {}
for model_result_filepath in model_result_filepaths:
# Creation of result
eval_result = EvalResult.init_from_json_file(model_result_filepath)
# print("request_path:",requests_path)
eval_result.update_with_request_file(requests_path)
# print(eval_result)
# Store results of same eval together
eval_name = eval_result.eval_name
if eval_name in eval_results.keys():
eval_results[eval_name].results.update({k: v for k, v in
eval_result.results.items() if v is not None})
else:
eval_results[eval_name] = eval_result
results = []
for v in eval_results.values():
try:
v.to_dict() # we test if the dict version is complete
results.append(v)
except KeyError: # not all eval values present
continue
return results