HumanLikeness / src /backend /evaluate_model.py
XufengDuan's picture
update scripts
d24f6e8
import logging
import pandas as pd
import os
import csv
import src.envs as envs
from src.backend.model_operations import ResponseGenerator, EvaluationModel
import src.backend.util as util
logging.basicConfig(level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s')
class Evaluator:
"""A class to evaluate summaries generated by a language model.
Attributes:
model (str): The name or path of the model.
revision (str): The model revision.
precision (str): The precision setting of the model.
num_fewshot (int): Number of few-shot examples to use.
batch_size (int): Batch size for processing.
device (str): The device to run the model on.
no_cache (bool): Flag to disable caching.
limit (int): Limit on the number of items to process.
write_out (bool): Whether to write results to a file.
output_base_path (str): Base path for output files.
response_generator (ResponseGenerator): Instance for generating summaries.
eval_model (EvaluationModel): Instance for evaluating summaries.
"""
def __init__(self, model, revision, precision, batch_size,
device, no_cache, limit, write_out=True,
output_base_path='logs'):
"""Initializes the Evaluator with the given model and settings.
Args:
model (str): The name or path of the model.
revision (str): The model revision.
precision (str): The precision setting of the model.
num_fewshot (int): Number of few-shot examples to use.
batch_size (int): Batch size for processing.
device (str): The device to run the model on.
no_cache (bool): Flag to disable caching.
limit (int): Limit on the number of items to process.
write_out (bool): Whether to write results to a file.
output_base_path (str): Base path for output files.
"""
self.model = model
self.revision = revision
self.precision = precision
self.batch_size = batch_size
self.device = device
self.no_cache = no_cache
self.limit = limit
self.write_out = write_out
self.output_base_path = output_base_path
try:
self.response_generator = ResponseGenerator(model, revision)
self.eval_model = EvaluationModel()
except Exception as e:
logging.error(f"Error initializing Evaluator: {e}")
raise
def evaluate(self):
"""
Performs the evaluation process by generating summaries
and computing metrics.
Returns:
dict: A dictionary containing evaluation results.
"""
try:
from openpyxl import load_workbook
# df = load_workbook(filename=envs.DATASET_PATH)
df_prompt = load_workbook(filename=envs.PROMPT_PATH)
# df = pd.read_excel(envs.DATASET_PATH, engine='xlrd') #读取原数据,原始数据,本项目这里应该是问题
# df_prompt = pd.read_excel(envs.PROMPT_PATH, engine='xlrd')
# df_prompt = pd.read_csv(envs.PROMPT_PATH)
# print(envs.DATASET_PATH)
# print(df.shape)
# print(df.iloc[-1])
self.generated_responses_df = self.response_generator.generate_response(envs.DATASET_PATH, df_prompt, save_path=f"./generation_results/{self.model}.csv")
# exit()
# avg_response_len = self.response_generator.avg_length
# answer_rate = self.response_generator.answer_rate
envs.API.upload_file(
path_or_fileobj=f"./generation_results/{self.model}.csv",
path_in_repo=f"{self.model}.csv",
repo_id=envs.RESULTS_REPO,
repo_type="dataset",
)
'''开始评估模型的结果'''
self.humanlike = self.eval_model.evaluate_humanlike(self.generated_responses_df, envs.HUMAN_DATA, f"./generation_results/{self.model}.csv")
all_results = self.humanlike
# Prepare individual experiment scores and CIs
experiment_results = {}
for exp, data in all_results['per_experiment'].items():
experiment_results[f'{exp}'] = data['average_js_divergence']
experiment_results[f'{exp}_ci'] = data['confidence_interval']
# Write results into results using util.format_results
results = util.format_results(
model_name=self.model,
revision=self.revision,
precision=self.precision,
overall_js=all_results['overall']['average_js_divergence'],
overall_ci=all_results['overall']['confidence_interval'],
**experiment_results # Unpack the experiment results
)
return results
except FileNotFoundError:
logging.error(f"File not found: {envs.DATASET_PATH}")
raise
except Exception as e:
logging.error(f"Error during evaluation: {e}")
raise
def write_results(self):
print('Updating result files')
leaderboard_path = os.getcwd() # the path of leaderboard folder
print(leaderboard_path)
working_path = os.path.join(leaderboard_path, 'Humanlike Leaderboard Results')
if not os.path.exists(working_path):
logging.error(f"Need to first download the results from google drive to the learderboard folder")
raise
source_response_df = self.generated_responses_df[["user_prompt", "response"]]
# #update leaderboard_responses.csv
# #first remove previous results for the current model
# existing_df = pd.read_csv(os.path.join(working_path, 'leaderboard_responses.csv'), encoding='utf-8', sep="\t")
# mask = existing_df['model'] == self.model
# existing_df = existing_df[~mask]
# # get new result
leaderboard_responses_df = source_response_df
leaderboard_responses_df.insert(2, "model", [self.model]*leaderboard_responses_df.shape[0])
leaderboard_responses_df.to_csv(os.path.join(working_path, 'leaderboard_responses.csv'), mode='a', index=False, header=False)
print('leaderboard_responses.csv has been updated')
# update leaderboard_responses_with_scores.csv
# BUG: get error when opening the file
# existing_df = pd.read_csv(os.path.join(working_path, 'leaderboard_responses_with_scores.csv'),
# encoding='utf-8', sep=",", on_bad_lines='warn', quotechar='"', quoting=2)
# print(existing_df.shape)
# mask = existing_df['model'] == self.model
# existing_df = existing_df[~mask]
# get new result
leaderboard_responses_with_scores_df = pd.DataFrame.from_dict(self.eval_results)
leaderboard_responses_with_scores_df.insert(3, "model", [self.model]*leaderboard_responses_with_scores_df.shape[0])
leaderboard_responses_with_scores_df.to_csv(os.path.join(working_path, 'leaderboard_responses_with_scores.csv'), mode='a', index=False, header=False)
print('leaderboard_responses_with_scores.csv has been updated')