Spaces:
Sleeping
Sleeping
XufengDuan
commited on
Commit
•
e157bd5
1
Parent(s):
dcbdce4
update scripts
Browse files- app.py +1 -1
- src/backend/evaluate_model.py +27 -11
- src/backend/model_operations.py +211 -86
- src/backend/util.py +56 -22
- src/display/about.py +33 -40
- src/envs.py +22 -1
- src/populate.py +8 -4
app.py
CHANGED
@@ -457,7 +457,7 @@ with demo:
|
|
457 |
def background_init_and_process():
|
458 |
global original_df, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df
|
459 |
original_df, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = init_space()
|
460 |
-
process_pending_evals()
|
461 |
|
462 |
scheduler = BackgroundScheduler()
|
463 |
scheduler.add_job(background_init_and_process, 'date', run_date=datetime.datetime.now()) # 立即执行
|
|
|
457 |
def background_init_and_process():
|
458 |
global original_df, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df
|
459 |
original_df, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = init_space()
|
460 |
+
#process_pending_evals()
|
461 |
|
462 |
scheduler = BackgroundScheduler()
|
463 |
scheduler.add_job(background_init_and_process, 'date', run_date=datetime.datetime.now()) # 立即执行
|
src/backend/evaluate_model.py
CHANGED
@@ -95,23 +95,39 @@ class Evaluator:
|
|
95 |
'''开始评估模型的结果'''
|
96 |
self.humanlike = self.eval_model.evaluate_humanlike(self.generated_summaries_df, envs.HUMAN_DATA, f"./generation_results/{self.model}.csv")
|
97 |
|
98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
'''原始指标'''
|
|
|
101 |
# self.hallucination_scores, self.eval_results = self.eval_model.evaluate_hallucination(
|
102 |
# self.generated_summaries_df)
|
103 |
# factual_consistency_rate = self.eval_model.compute_factual_consistency_rate()
|
104 |
# hallucination_rate = self.eval_model.hallucination_rate
|
105 |
-
factual_consistency_rate = 0
|
106 |
-
answer_rate = 0
|
107 |
-
avg_summary_len = 0
|
108 |
-
|
109 |
-
results = util.format_results(model_name=self.model, revision=self.revision,
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
return results
|
116 |
except FileNotFoundError:
|
117 |
logging.error(f"File not found: {envs.DATASET_PATH}")
|
|
|
95 |
'''开始评估模型的结果'''
|
96 |
self.humanlike = self.eval_model.evaluate_humanlike(self.generated_summaries_df, envs.HUMAN_DATA, f"./generation_results/{self.model}.csv")
|
97 |
|
98 |
+
all_results = self.humanlike
|
99 |
+
# Prepare individual experiment scores and CIs
|
100 |
+
experiment_results = {}
|
101 |
+
for exp, data in all_results['per_experiment'].items():
|
102 |
+
experiment_results[f'{exp}'] = data['average_js_divergence']
|
103 |
+
experiment_results[f'{exp}_ci'] = data['confidence_interval']
|
104 |
+
|
105 |
+
# Write results into results using util.format_results
|
106 |
+
results = util.format_results(
|
107 |
+
model_name=self.model,
|
108 |
+
revision=self.revision,
|
109 |
+
precision=self.precision,
|
110 |
+
overall_js=all_results['overall']['average_js_divergence'],
|
111 |
+
overall_ci=all_results['overall']['confidence_interval'],
|
112 |
+
**experiment_results # Unpack the experiment results
|
113 |
+
)
|
114 |
|
115 |
'''原始指标'''
|
116 |
+
|
117 |
# self.hallucination_scores, self.eval_results = self.eval_model.evaluate_hallucination(
|
118 |
# self.generated_summaries_df)
|
119 |
# factual_consistency_rate = self.eval_model.compute_factual_consistency_rate()
|
120 |
# hallucination_rate = self.eval_model.hallucination_rate
|
121 |
+
# factual_consistency_rate = 0
|
122 |
+
# answer_rate = 0
|
123 |
+
# avg_summary_len = 0
|
124 |
+
#
|
125 |
+
# results = util.format_results(model_name=self.model, revision=self.revision,
|
126 |
+
# precision=self.precision,
|
127 |
+
# factual_consistency_rate=factual_consistency_rate,
|
128 |
+
# hallucination_rate=self.humanlike,
|
129 |
+
# answer_rate=answer_rate,
|
130 |
+
# avg_summary_len=avg_summary_len)
|
131 |
return results
|
132 |
except FileNotFoundError:
|
133 |
logging.error(f"File not found: {envs.DATASET_PATH}")
|
src/backend/model_operations.py
CHANGED
@@ -28,6 +28,7 @@ import src.envs as envs
|
|
28 |
# # import pandas as pd
|
29 |
# import scipy
|
30 |
from scipy.spatial.distance import jensenshannon
|
|
|
31 |
import numpy as np
|
32 |
import spacy_transformers
|
33 |
|
@@ -238,7 +239,6 @@ class SummaryGenerator:
|
|
238 |
|
239 |
def extract_responses(text, trigger_words=None):
|
240 |
if trigger_words is None:
|
241 |
-
# 如果没有提供特定的触发词列表,则使用默认值
|
242 |
trigger_words = ["sure", "okay", "yes"]
|
243 |
|
244 |
try:
|
@@ -248,7 +248,7 @@ class SummaryGenerator:
|
|
248 |
|
249 |
sentences = [sentence.split(':', 1)[-1].strip() if ':' in sentence else sentence for
|
250 |
sentence in sentences]
|
251 |
-
if any(sentences[0].lower().startswith(word) for word in trigger_words):
|
252 |
_response1 = sentences[1].strip() if len(sentences) > 1 else None
|
253 |
_response2 = sentences[2].strip() if len(sentences) > 2 else None
|
254 |
else:
|
@@ -279,10 +279,8 @@ class SummaryGenerator:
|
|
279 |
Experiment_ID.append(ID)
|
280 |
Questions_ID.append(q_column[j])
|
281 |
User_prompt.append(_user_prompt)
|
282 |
-
|
283 |
Response.append(_response2)
|
284 |
-
|
285 |
-
Factor_2.append(V2_column[j])
|
286 |
Stimuli_1.append(Stimuli_2_column[j])
|
287 |
Item_ID.append(Item_column[j])
|
288 |
Condition.append(Condition_column[j])
|
@@ -292,10 +290,7 @@ class SummaryGenerator:
|
|
292 |
Questions_ID.append(str(q_column[j]) + '1')
|
293 |
User_prompt.append(_user_prompt)
|
294 |
Response.append(_response1)
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
Factor_2.append(V2_column[j])
|
299 |
Stimuli_1.append(Stimuli_1_column[j])
|
300 |
Item_ID.append(Item_column[j])
|
301 |
Condition.append(Condition_column[j])
|
@@ -343,7 +338,7 @@ class SummaryGenerator:
|
|
343 |
together_ai_api_models = ['mixtral', 'dbrx', 'wizardlm']
|
344 |
for together_ai_api_model in together_ai_api_models:
|
345 |
if together_ai_api_model in self.model_id.lower():
|
346 |
-
using_together_api = True
|
347 |
break
|
348 |
# print('适用哪一种LLM',together_ai_api_model , using_together_api)
|
349 |
# print(self.model_id.lower()) #meta-llama/llama-2-7b-chat-hf
|
@@ -358,7 +353,7 @@ class SummaryGenerator:
|
|
358 |
payload = {
|
359 |
"model": self.model_id,
|
360 |
# "max_tokens": 4096,
|
361 |
-
'max_new_tokens':
|
362 |
# "temperature": 0.0,
|
363 |
# 'repetition_penalty': 1.1 if 'mixtral' in self.model_id.lower() else 1
|
364 |
}
|
@@ -408,7 +403,7 @@ class SummaryGenerator:
|
|
408 |
)
|
409 |
|
410 |
generation_args = {
|
411 |
-
"max_new_tokens":
|
412 |
"return_full_text": False,
|
413 |
#"temperature": 0.0,
|
414 |
"do_sample": False,
|
@@ -422,7 +417,7 @@ class SummaryGenerator:
|
|
422 |
print(prompt)
|
423 |
input_ids = self.tokenizer(prompt, return_tensors="pt").to('cuda')
|
424 |
with torch.no_grad():
|
425 |
-
outputs = self.local_model.generate(**input_ids, max_new_tokens=
|
426 |
result = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
427 |
result = result.replace(prompt[0], '')
|
428 |
print(result)
|
@@ -430,45 +425,83 @@ class SummaryGenerator:
|
|
430 |
|
431 |
|
432 |
elif self.local_model is None:
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
if result is None:
|
451 |
-
time.sleep(1) # Optional: Add a small delay before retrying
|
452 |
-
|
453 |
-
return result
|
454 |
-
|
455 |
-
except Exception as e:
|
456 |
-
print(f"Error with TOKEN: {envs.TOKEN}, trying with TOKEN1")
|
457 |
try:
|
458 |
-
|
|
|
459 |
messages = [{"role": "system", "content": system_prompt}, {"role": "user", "content": user_prompt}]
|
460 |
result = None
|
|
|
461 |
while result is None:
|
462 |
-
outputs = client.chat_completion(messages, max_tokens=
|
463 |
result = outputs['choices'][0]['message']['content']
|
464 |
|
465 |
if result is None:
|
466 |
time.sleep(1) # Optional: Add a small delay before retrying
|
467 |
|
468 |
return result
|
469 |
-
|
470 |
-
|
471 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
472 |
|
473 |
# except: # fail to call api. run it locally.
|
474 |
# self.tokenizer = AutoTokenizer.from_pretrained(self.model_id, trust_remote_code=True)
|
@@ -505,7 +538,7 @@ class SummaryGenerator:
|
|
505 |
"temperature": 0,
|
506 |
"top_p": 0.95, # cannot change
|
507 |
"top_k": 0,
|
508 |
-
"max_output_tokens":
|
509 |
# "response_mime_type": "application/json",
|
510 |
}
|
511 |
safety_settings = [
|
@@ -545,7 +578,7 @@ class SummaryGenerator:
|
|
545 |
messages=[{"role": "system", "content": system_prompt},
|
546 |
{"role": "user", "content": user_prompt}],
|
547 |
# temperature=0.0,
|
548 |
-
max_tokens=
|
549 |
api_key = os.getenv('OpenAI_key')
|
550 |
)
|
551 |
result = response['choices'][0]['message']['content']
|
@@ -643,8 +676,10 @@ class EvaluationModel:
|
|
643 |
sentences = [sentence.split(':', 1)[-1].strip() if ':' in sentence else sentence
|
644 |
for sentence in sentences]
|
645 |
rs = [sentence.strip() for sentence in sentences if sentence.strip()]
|
646 |
-
|
|
|
647 |
'''Exp1'''
|
|
|
648 |
if summaries_df["Experiment"][i] == "E1":
|
649 |
print("E1", rs)
|
650 |
rs = rs.replace('"','')
|
@@ -658,7 +693,7 @@ class EvaluationModel:
|
|
658 |
|
659 |
|
660 |
'''Exp2'''
|
661 |
-
|
662 |
elif summaries_df["Experiment"][i] == "E2":
|
663 |
# rs = summaries_df["Response"][i].strip()
|
664 |
rs = rs.split(' ')
|
@@ -677,6 +712,7 @@ class EvaluationModel:
|
|
677 |
output.append("Other")
|
678 |
|
679 |
'''Exp3'''
|
|
|
680 |
elif summaries_df["Experiment"][i] == "E3":
|
681 |
# rs = summaries_df["Response"][i].strip()
|
682 |
print("E3", rs)
|
@@ -906,18 +942,28 @@ class EvaluationModel:
|
|
906 |
for i in range(len(summaries_df["Experiment"])):
|
907 |
# vote_1_1, vote_1_2, vote_1_3 = 0, 0, 0
|
908 |
# print()
|
|
|
909 |
if pd.isna(summaries_df["Response"][i]):
|
910 |
output.append("Other")
|
911 |
continue
|
912 |
rs = summaries_df["Response"][i].strip().lower()
|
|
|
|
|
|
|
|
|
|
|
|
|
913 |
'''Exp1'''
|
|
|
914 |
if summaries_df["Experiment"][i] == "E1":
|
915 |
print("E1", rs)
|
916 |
-
rs = rs.replace('"','')
|
917 |
-
|
918 |
-
|
|
|
|
|
919 |
output.append("Round")
|
920 |
-
elif
|
921 |
output.append("Spiky")
|
922 |
else:
|
923 |
output.append("Other")
|
@@ -926,7 +972,6 @@ class EvaluationModel:
|
|
926 |
'''Exp2'''
|
927 |
|
928 |
elif summaries_df["Experiment"][i] == "E2":
|
929 |
-
# rs = summaries_df["Response"][i].strip()
|
930 |
rs = rs.split(' ')
|
931 |
print("E2", rs)
|
932 |
male, female = 0, 0
|
@@ -946,7 +991,7 @@ class EvaluationModel:
|
|
946 |
elif summaries_df["Experiment"][i] == "E3":
|
947 |
# rs = summaries_df["Response"][i].strip()
|
948 |
print("E3", rs)
|
949 |
-
rs = rs.replace('"', '')
|
950 |
pair = summaries_df["Factor 2"][i]
|
951 |
word1, word2 = pair.split('_')
|
952 |
|
@@ -975,7 +1020,8 @@ class EvaluationModel:
|
|
975 |
print(f"Unexpected error: {e}")
|
976 |
output.append("Other")
|
977 |
continue
|
978 |
-
|
|
|
979 |
target = summaries_df["Factor 2"][i].strip().lower()
|
980 |
pair = target + "_" + meaning_word
|
981 |
print("E4:", pair)
|
@@ -1053,7 +1099,6 @@ class EvaluationModel:
|
|
1053 |
doc = nlp1(sentence)
|
1054 |
subject = "None"
|
1055 |
obj = "None"
|
1056 |
-
# 遍历依存关系,寻找主语和宾语
|
1057 |
for token in doc:
|
1058 |
if token.dep_ == "nsubj":
|
1059 |
subject = token.text
|
@@ -1078,14 +1123,24 @@ class EvaluationModel:
|
|
1078 |
|
1079 |
'''Exp7'''
|
1080 |
elif summaries_df["Experiment"][i] == "E7":
|
1081 |
-
|
1082 |
-
rs = rs.replace(".", "").replace(",", "")
|
1083 |
-
print("E7",rs)
|
1084 |
-
|
1085 |
-
|
1086 |
-
|
1087 |
-
|
1088 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1089 |
output.append("Other")
|
1090 |
|
1091 |
'''Exp8'''
|
@@ -1136,14 +1191,17 @@ class EvaluationModel:
|
|
1136 |
|
1137 |
'''Exp10'''
|
1138 |
elif summaries_df["Experiment"][i] == "E10":
|
1139 |
-
#
|
1140 |
-
rs = rs.replace(".", "")
|
1141 |
-
|
|
|
|
|
|
|
1142 |
output.append("1")
|
1143 |
else:
|
1144 |
output.append("0")
|
1145 |
else:
|
1146 |
-
print("can
|
1147 |
output.append("NA")
|
1148 |
# print(output)
|
1149 |
# exit()
|
@@ -1207,6 +1265,7 @@ class EvaluationModel:
|
|
1207 |
human_df = pd.concat([human_df, human_e5], ignore_index=True)
|
1208 |
llm_df = pd.concat([llm_df, llm_e5], ignore_index=True)
|
1209 |
|
|
|
1210 |
### Calculate Average JS Divergence ###
|
1211 |
|
1212 |
# Extract the relevant columns for JS divergence calculation
|
@@ -1216,14 +1275,14 @@ class EvaluationModel:
|
|
1216 |
# Get unique Question_IDs present in both datasets
|
1217 |
common_question_ids = set(human_responses['Question_ID']).intersection(set(llm_responses['Question_ID']))
|
1218 |
|
1219 |
-
# Initialize a
|
1220 |
-
|
1221 |
-
js_divergence ={}
|
1222 |
|
1223 |
# Calculate JS divergence for each common Question_ID
|
1224 |
for q_id in common_question_ids:
|
1225 |
# Get response distributions for the current Question_ID in both datasets
|
1226 |
-
human_dist = human_responses[human_responses['Question_ID'] == q_id]['Coding'].value_counts(
|
|
|
1227 |
llm_dist = llm_responses[llm_responses['Question_ID'] == q_id]['Coding'].value_counts(normalize=True)
|
1228 |
|
1229 |
# Reindex the distributions to have the same index, filling missing values with 0
|
@@ -1231,28 +1290,94 @@ class EvaluationModel:
|
|
1231 |
human_dist = human_dist.reindex(all_responses, fill_value=0)
|
1232 |
llm_dist = llm_dist.reindex(all_responses, fill_value=0)
|
1233 |
|
1234 |
-
# Calculate JS divergence
|
1235 |
js_div = jensenshannon(human_dist, llm_dist, base=2)
|
1236 |
experiment_id = q_id.split('_')[1]
|
|
|
1237 |
if experiment_id not in js_divergence:
|
1238 |
js_divergence[experiment_id] = []
|
1239 |
js_divergence[experiment_id].append(js_div)
|
1240 |
|
1241 |
-
|
1242 |
-
|
1243 |
-
|
1244 |
-
|
1245 |
-
|
1246 |
-
|
1247 |
-
|
1248 |
-
|
1249 |
-
|
1250 |
-
|
1251 |
-
# JS overall
|
1252 |
-
avg_js_divergence = 1 - np.nanmean(js_divergence_list)
|
1253 |
-
print("avg_js_divergence:", avg_js_divergence)
|
1254 |
|
1255 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1256 |
|
1257 |
|
1258 |
def evaluate_humanlike(self, summaries_df: object, human_data_path: object, result_save_path: object) -> object:
|
@@ -1271,7 +1396,7 @@ class EvaluationModel:
|
|
1271 |
# print(f'Save human coding results to {save_path}')
|
1272 |
# fpath = Path(save_path)
|
1273 |
# fpath.parent.mkdir(parents=True, exist_ok=True)
|
1274 |
-
# self.data.to_csv(fpath)
|
1275 |
|
1276 |
|
1277 |
'''coding llm data'''
|
|
|
28 |
# # import pandas as pd
|
29 |
# import scipy
|
30 |
from scipy.spatial.distance import jensenshannon
|
31 |
+
from scipy.stats import bootstrap
|
32 |
import numpy as np
|
33 |
import spacy_transformers
|
34 |
|
|
|
239 |
|
240 |
def extract_responses(text, trigger_words=None):
|
241 |
if trigger_words is None:
|
|
|
242 |
trigger_words = ["sure", "okay", "yes"]
|
243 |
|
244 |
try:
|
|
|
248 |
|
249 |
sentences = [sentence.split(':', 1)[-1].strip() if ':' in sentence else sentence for
|
250 |
sentence in sentences]
|
251 |
+
if any(sentences[0].lower().startswith(word) for word in trigger_words) and len(sentences)>2:
|
252 |
_response1 = sentences[1].strip() if len(sentences) > 1 else None
|
253 |
_response2 = sentences[2].strip() if len(sentences) > 2 else None
|
254 |
else:
|
|
|
279 |
Experiment_ID.append(ID)
|
280 |
Questions_ID.append(q_column[j])
|
281 |
User_prompt.append(_user_prompt)
|
|
|
282 |
Response.append(_response2)
|
283 |
+
Factor_2.append(_response)
|
|
|
284 |
Stimuli_1.append(Stimuli_2_column[j])
|
285 |
Item_ID.append(Item_column[j])
|
286 |
Condition.append(Condition_column[j])
|
|
|
290 |
Questions_ID.append(str(q_column[j]) + '1')
|
291 |
User_prompt.append(_user_prompt)
|
292 |
Response.append(_response1)
|
293 |
+
Factor_2.append(_response)
|
|
|
|
|
|
|
294 |
Stimuli_1.append(Stimuli_1_column[j])
|
295 |
Item_ID.append(Item_column[j])
|
296 |
Condition.append(Condition_column[j])
|
|
|
338 |
together_ai_api_models = ['mixtral', 'dbrx', 'wizardlm']
|
339 |
for together_ai_api_model in together_ai_api_models:
|
340 |
if together_ai_api_model in self.model_id.lower():
|
341 |
+
#using_together_api = True
|
342 |
break
|
343 |
# print('适用哪一种LLM',together_ai_api_model , using_together_api)
|
344 |
# print(self.model_id.lower()) #meta-llama/llama-2-7b-chat-hf
|
|
|
353 |
payload = {
|
354 |
"model": self.model_id,
|
355 |
# "max_tokens": 4096,
|
356 |
+
'max_new_tokens': 100,
|
357 |
# "temperature": 0.0,
|
358 |
# 'repetition_penalty': 1.1 if 'mixtral' in self.model_id.lower() else 1
|
359 |
}
|
|
|
403 |
)
|
404 |
|
405 |
generation_args = {
|
406 |
+
"max_new_tokens": 100,
|
407 |
"return_full_text": False,
|
408 |
#"temperature": 0.0,
|
409 |
"do_sample": False,
|
|
|
417 |
print(prompt)
|
418 |
input_ids = self.tokenizer(prompt, return_tensors="pt").to('cuda')
|
419 |
with torch.no_grad():
|
420 |
+
outputs = self.local_model.generate(**input_ids, max_new_tokens=100, do_sample=True, pad_token_id=self.tokenizer.eos_token_id)
|
421 |
result = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
422 |
result = result.replace(prompt[0], '')
|
423 |
print(result)
|
|
|
425 |
|
426 |
|
427 |
elif self.local_model is None:
|
428 |
+
import random
|
429 |
+
def get_random_token():
|
430 |
+
i = random.randint(1, 20)
|
431 |
+
token = getattr(envs, f"TOKEN{i}")
|
432 |
+
return token, i
|
433 |
+
|
434 |
+
tokens_tried = set()
|
435 |
+
|
436 |
+
while len(tokens_tried) < 10:
|
437 |
+
token,i = get_random_token()
|
438 |
+
|
439 |
+
if token in tokens_tried:
|
440 |
+
continue
|
441 |
+
|
442 |
+
tokens_tried.add(token)
|
443 |
+
print(f"Trying with token: TOKEN{i}")
|
444 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
445 |
try:
|
446 |
+
from huggingface_hub import InferenceClient
|
447 |
+
client = InferenceClient(self.model_id, api_key=token, headers={"X-use-cache": "false"})
|
448 |
messages = [{"role": "system", "content": system_prompt}, {"role": "user", "content": user_prompt}]
|
449 |
result = None
|
450 |
+
|
451 |
while result is None:
|
452 |
+
outputs = client.chat_completion(messages, max_tokens=100)
|
453 |
result = outputs['choices'][0]['message']['content']
|
454 |
|
455 |
if result is None:
|
456 |
time.sleep(1) # Optional: Add a small delay before retrying
|
457 |
|
458 |
return result
|
459 |
+
|
460 |
+
except Exception as e:
|
461 |
+
print(f"Error with token: {token}, trying another token...")
|
462 |
+
continue
|
463 |
+
|
464 |
+
raise Exception("All tokens failed.")
|
465 |
+
# print(self.model_id)
|
466 |
+
# print(self.api_base)
|
467 |
+
# mistralai/Mistral-7B-Instruct-v0.1
|
468 |
+
# https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.1
|
469 |
+
# Using HF API or download checkpoints
|
470 |
+
# try: # try use HuggingFace API
|
471 |
+
# from huggingface_hub import InferenceClient
|
472 |
+
# print("token_for_request:",envs.TOKEN)
|
473 |
+
# print(self.model_id)
|
474 |
+
# client = InferenceClient(self.model_id,api_key=envs.TOKEN,headers={"X-use-cache": "false"})
|
475 |
+
# messages = [{"role": "system", "content": system_prompt},{"role": "user", "content": user_prompt}]
|
476 |
+
# # outputs = client.chat_completion(messages, max_tokens=100)
|
477 |
+
# result = None
|
478 |
+
# while result is None:
|
479 |
+
# outputs = client.chat_completion(messages, max_tokens=100)
|
480 |
+
# result = outputs['choices'][0]['message']['content']
|
481 |
+
#
|
482 |
+
# if result is None:
|
483 |
+
# time.sleep(1) # Optional: Add a small delay before retrying
|
484 |
+
#
|
485 |
+
# return result
|
486 |
+
#
|
487 |
+
# except Exception as e:
|
488 |
+
# print(f"Error with TOKEN: {envs.TOKEN}, trying with TOKEN1")
|
489 |
+
# try:
|
490 |
+
# client = InferenceClient(self.model_id, api_key=envs.TOKEN1, headers={"X-use-cache": "false"})
|
491 |
+
# messages = [{"role": "system", "content": system_prompt}, {"role": "user", "content": user_prompt}]
|
492 |
+
# result = None
|
493 |
+
# while result is None:
|
494 |
+
# outputs = client.chat_completion(messages, max_tokens=100)
|
495 |
+
# result = outputs['choices'][0]['message']['content']
|
496 |
+
#
|
497 |
+
# if result is None:
|
498 |
+
# time.sleep(1) # Optional: Add a small delay before retrying
|
499 |
+
#
|
500 |
+
# return result
|
501 |
+
# except Exception as ee:
|
502 |
+
# print(f"Error with TOKEN1: {envs.TOKEN1}")
|
503 |
+
# raise ee
|
504 |
+
|
505 |
|
506 |
# except: # fail to call api. run it locally.
|
507 |
# self.tokenizer = AutoTokenizer.from_pretrained(self.model_id, trust_remote_code=True)
|
|
|
538 |
"temperature": 0,
|
539 |
"top_p": 0.95, # cannot change
|
540 |
"top_k": 0,
|
541 |
+
"max_output_tokens": 100,
|
542 |
# "response_mime_type": "application/json",
|
543 |
}
|
544 |
safety_settings = [
|
|
|
578 |
messages=[{"role": "system", "content": system_prompt},
|
579 |
{"role": "user", "content": user_prompt}],
|
580 |
# temperature=0.0,
|
581 |
+
max_tokens=100,
|
582 |
api_key = os.getenv('OpenAI_key')
|
583 |
)
|
584 |
result = response['choices'][0]['message']['content']
|
|
|
676 |
sentences = [sentence.split(':', 1)[-1].strip() if ':' in sentence else sentence
|
677 |
for sentence in sentences]
|
678 |
rs = [sentence.strip() for sentence in sentences if sentence.strip()]
|
679 |
+
rs = '\n'.join(rs)
|
680 |
+
rs = rs.replace("[", '').replace("]", '')
|
681 |
'''Exp1'''
|
682 |
+
# period and comma will affect the result
|
683 |
if summaries_df["Experiment"][i] == "E1":
|
684 |
print("E1", rs)
|
685 |
rs = rs.replace('"','')
|
|
|
693 |
|
694 |
|
695 |
'''Exp2'''
|
696 |
+
# not the first pronoun
|
697 |
elif summaries_df["Experiment"][i] == "E2":
|
698 |
# rs = summaries_df["Response"][i].strip()
|
699 |
rs = rs.split(' ')
|
|
|
712 |
output.append("Other")
|
713 |
|
714 |
'''Exp3'''
|
715 |
+
#
|
716 |
elif summaries_df["Experiment"][i] == "E3":
|
717 |
# rs = summaries_df["Response"][i].strip()
|
718 |
print("E3", rs)
|
|
|
942 |
for i in range(len(summaries_df["Experiment"])):
|
943 |
# vote_1_1, vote_1_2, vote_1_3 = 0, 0, 0
|
944 |
# print()
|
945 |
+
# data cleaning
|
946 |
if pd.isna(summaries_df["Response"][i]):
|
947 |
output.append("Other")
|
948 |
continue
|
949 |
rs = summaries_df["Response"][i].strip().lower()
|
950 |
+
sentences = rs.split('\n')
|
951 |
+
sentences = [sentence.split(':', 1)[-1].strip() if ':' in sentence else sentence
|
952 |
+
for sentence in sentences]
|
953 |
+
rs = [sentence.strip() for sentence in sentences if sentence.strip()]
|
954 |
+
rs = '\n'.join(rs)
|
955 |
+
rs = rs.replace('[', '').replace(']','').replace('.','')
|
956 |
'''Exp1'''
|
957 |
+
# the period and comma will affect the result
|
958 |
if summaries_df["Experiment"][i] == "E1":
|
959 |
print("E1", rs)
|
960 |
+
rs = rs.replace('"', '') # Remove any unnecessary quotation marks
|
961 |
+
rs_cleaned = rs.replace(',', '') # Remove periods and commas
|
962 |
+
|
963 |
+
# Use 'contains' instead of 'equals' for keyword matching to avoid issues caused by punctuation
|
964 |
+
if "round" in rs_cleaned:
|
965 |
output.append("Round")
|
966 |
+
elif "spiky" in rs_cleaned:
|
967 |
output.append("Spiky")
|
968 |
else:
|
969 |
output.append("Other")
|
|
|
972 |
'''Exp2'''
|
973 |
|
974 |
elif summaries_df["Experiment"][i] == "E2":
|
|
|
975 |
rs = rs.split(' ')
|
976 |
print("E2", rs)
|
977 |
male, female = 0, 0
|
|
|
991 |
elif summaries_df["Experiment"][i] == "E3":
|
992 |
# rs = summaries_df["Response"][i].strip()
|
993 |
print("E3", rs)
|
994 |
+
rs = rs.replace('"', '').lower().replace(".","")
|
995 |
pair = summaries_df["Factor 2"][i]
|
996 |
word1, word2 = pair.split('_')
|
997 |
|
|
|
1020 |
print(f"Unexpected error: {e}")
|
1021 |
output.append("Other")
|
1022 |
continue
|
1023 |
+
meaning_word = meaning_word.replace('.', '')
|
1024 |
+
meaning_word = meaning_word.replace(';', '')
|
1025 |
target = summaries_df["Factor 2"][i].strip().lower()
|
1026 |
pair = target + "_" + meaning_word
|
1027 |
print("E4:", pair)
|
|
|
1099 |
doc = nlp1(sentence)
|
1100 |
subject = "None"
|
1101 |
obj = "None"
|
|
|
1102 |
for token in doc:
|
1103 |
if token.dep_ == "nsubj":
|
1104 |
subject = token.text
|
|
|
1123 |
|
1124 |
'''Exp7'''
|
1125 |
elif summaries_df["Experiment"][i] == "E7":
|
1126 |
+
# Remove periods and commas, then convert to lowercase
|
1127 |
+
rs = rs.replace(".", "").replace(",", "").lower()
|
1128 |
+
print("E7", rs)
|
1129 |
+
|
1130 |
+
# Split the response into words
|
1131 |
+
words = rs.split(' ')
|
1132 |
+
found = False
|
1133 |
+
|
1134 |
+
for word in words:
|
1135 |
+
if word == "no":
|
1136 |
+
output.append("0")
|
1137 |
+
found = True
|
1138 |
+
break
|
1139 |
+
elif word == "yes":
|
1140 |
+
output.append("1")
|
1141 |
+
found = True
|
1142 |
+
break
|
1143 |
+
if not found:
|
1144 |
output.append("Other")
|
1145 |
|
1146 |
'''Exp8'''
|
|
|
1191 |
|
1192 |
'''Exp10'''
|
1193 |
elif summaries_df["Experiment"][i] == "E10":
|
1194 |
+
# Remove periods from the response
|
1195 |
+
rs = rs.replace(".", "").lower() # Convert to lowercase to ensure case-insensitivity
|
1196 |
+
print("E10", rs)
|
1197 |
+
|
1198 |
+
# Check if the response contains "yes"
|
1199 |
+
if "yes" in rs:
|
1200 |
output.append("1")
|
1201 |
else:
|
1202 |
output.append("0")
|
1203 |
else:
|
1204 |
+
print("can’t find the Exp:", summaries_df["Experiment"][i])
|
1205 |
output.append("NA")
|
1206 |
# print(output)
|
1207 |
# exit()
|
|
|
1265 |
human_df = pd.concat([human_df, human_e5], ignore_index=True)
|
1266 |
llm_df = pd.concat([llm_df, llm_e5], ignore_index=True)
|
1267 |
|
1268 |
+
|
1269 |
### Calculate Average JS Divergence ###
|
1270 |
|
1271 |
# Extract the relevant columns for JS divergence calculation
|
|
|
1275 |
# Get unique Question_IDs present in both datasets
|
1276 |
common_question_ids = set(human_responses['Question_ID']).intersection(set(llm_responses['Question_ID']))
|
1277 |
|
1278 |
+
# Initialize a dictionary to store JS divergence for each experiment
|
1279 |
+
js_divergence = {}
|
|
|
1280 |
|
1281 |
# Calculate JS divergence for each common Question_ID
|
1282 |
for q_id in common_question_ids:
|
1283 |
# Get response distributions for the current Question_ID in both datasets
|
1284 |
+
human_dist = human_responses[human_responses['Question_ID'] == q_id]['Coding'].value_counts(
|
1285 |
+
normalize=True)
|
1286 |
llm_dist = llm_responses[llm_responses['Question_ID'] == q_id]['Coding'].value_counts(normalize=True)
|
1287 |
|
1288 |
# Reindex the distributions to have the same index, filling missing values with 0
|
|
|
1290 |
human_dist = human_dist.reindex(all_responses, fill_value=0)
|
1291 |
llm_dist = llm_dist.reindex(all_responses, fill_value=0)
|
1292 |
|
1293 |
+
# Calculate JS divergence
|
1294 |
js_div = jensenshannon(human_dist, llm_dist, base=2)
|
1295 |
experiment_id = q_id.split('_')[1]
|
1296 |
+
|
1297 |
if experiment_id not in js_divergence:
|
1298 |
js_divergence[experiment_id] = []
|
1299 |
js_divergence[experiment_id].append(js_div)
|
1300 |
|
1301 |
+
# Calculate the average JS divergence per experiment and the confidence interval
|
1302 |
+
results = {}
|
1303 |
+
for exp, divs in js_divergence.items():
|
1304 |
+
avg_js_divergence = 1 - np.nanmean(divs)
|
1305 |
+
ci_lower, ci_upper = bootstrap((divs,), np.nanmean, confidence_level=0.95,
|
1306 |
+
n_resamples=1000).confidence_interval
|
1307 |
+
results[exp] = {
|
1308 |
+
'average_js_divergence': avg_js_divergence,
|
1309 |
+
'confidence_interval': (1 - ci_upper, 1 - ci_lower) # Adjust for 1 - score
|
1310 |
+
}
|
|
|
|
|
|
|
1311 |
|
1312 |
+
# Calculate the overall average JS divergence and confidence interval
|
1313 |
+
overall_js_divergence = 1 - np.nanmean([js for divs in js_divergence.values() for js in divs])
|
1314 |
+
flattened_js_divergence = np.concatenate([np.array(divs) for divs in js_divergence.values()])
|
1315 |
+
|
1316 |
+
# 计算总体的置信区间
|
1317 |
+
overall_ci_lower, overall_ci_upper = bootstrap(
|
1318 |
+
(flattened_js_divergence,),
|
1319 |
+
np.nanmean,
|
1320 |
+
confidence_level=0.95,
|
1321 |
+
n_resamples=1000
|
1322 |
+
).confidence_interval
|
1323 |
+
|
1324 |
+
# Combine all results into one dictionary
|
1325 |
+
all_results = {
|
1326 |
+
'overall': {
|
1327 |
+
'average_js_divergence': overall_js_divergence,
|
1328 |
+
'confidence_interval': (1 - overall_ci_upper, 1 - overall_ci_lower)
|
1329 |
+
},
|
1330 |
+
'per_experiment': results
|
1331 |
+
}
|
1332 |
+
|
1333 |
+
return all_results
|
1334 |
+
|
1335 |
+
# ### Calculate Average JS Divergence ###
|
1336 |
+
#
|
1337 |
+
# # Extract the relevant columns for JS divergence calculation
|
1338 |
+
# human_responses = human_df[['Question_ID', 'Coding']]
|
1339 |
+
# llm_responses = llm_df[['Question_ID', 'Coding']]
|
1340 |
+
#
|
1341 |
+
# # Get unique Question_IDs present in both datasets
|
1342 |
+
# common_question_ids = set(human_responses['Question_ID']).intersection(set(llm_responses['Question_ID']))
|
1343 |
+
#
|
1344 |
+
# # Initialize a list to store JS divergence for each Question_ID
|
1345 |
+
# js_divergence_list = []
|
1346 |
+
# js_divergence ={}
|
1347 |
+
#
|
1348 |
+
# # Calculate JS divergence for each common Question_ID
|
1349 |
+
# for q_id in common_question_ids:
|
1350 |
+
# # Get response distributions for the current Question_ID in both datasets
|
1351 |
+
# human_dist = human_responses[human_responses['Question_ID'] == q_id]['Coding'].value_counts(normalize=True)
|
1352 |
+
# llm_dist = llm_responses[llm_responses['Question_ID'] == q_id]['Coding'].value_counts(normalize=True)
|
1353 |
+
#
|
1354 |
+
# # Reindex the distributions to have the same index, filling missing values with 0
|
1355 |
+
# all_responses = set(human_dist.index).union(set(llm_dist.index))
|
1356 |
+
# human_dist = human_dist.reindex(all_responses, fill_value=0)
|
1357 |
+
# llm_dist = llm_dist.reindex(all_responses, fill_value=0)
|
1358 |
+
#
|
1359 |
+
# # Calculate JS divergence and add to the list
|
1360 |
+
# js_div = jensenshannon(human_dist, llm_dist, base=2)
|
1361 |
+
# experiment_id = q_id.split('_')[1]
|
1362 |
+
# if experiment_id not in js_divergence:
|
1363 |
+
# js_divergence[experiment_id] = []
|
1364 |
+
# js_divergence[experiment_id].append(js_div)
|
1365 |
+
#
|
1366 |
+
# js_divergence_list.append(js_div)
|
1367 |
+
# #js_divergence[q_id] = js_div
|
1368 |
+
#
|
1369 |
+
#
|
1370 |
+
#
|
1371 |
+
# # Calculate the average JS divergence
|
1372 |
+
# # JS per experiment
|
1373 |
+
# avg_js_divergence_per_experiment = {exp: 1- np.nanmean(divs) for exp, divs in js_divergence.items()}
|
1374 |
+
# print(avg_js_divergence_per_experiment)
|
1375 |
+
#
|
1376 |
+
# # JS overall
|
1377 |
+
# avg_js_divergence = 1 - np.nanmean(js_divergence_list)
|
1378 |
+
# print("avg_js_divergence:", avg_js_divergence)
|
1379 |
+
#
|
1380 |
+
# return avg_js_divergence
|
1381 |
|
1382 |
|
1383 |
def evaluate_humanlike(self, summaries_df: object, human_data_path: object, result_save_path: object) -> object:
|
|
|
1396 |
# print(f'Save human coding results to {save_path}')
|
1397 |
# fpath = Path(save_path)
|
1398 |
# fpath.parent.mkdir(parents=True, exist_ok=True)
|
1399 |
+
# self.data.to_csv(fpath)
|
1400 |
|
1401 |
|
1402 |
'''coding llm data'''
|
src/backend/util.py
CHANGED
@@ -35,9 +35,49 @@ def create_pairs(df):
|
|
35 |
return pairs
|
36 |
|
37 |
|
38 |
-
def format_results(model_name: str, revision: str, precision: str,
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
"""
|
42 |
Formats the evaluation results into a structured dictionary.
|
43 |
|
@@ -45,34 +85,28 @@ def format_results(model_name: str, revision: str, precision: str,
|
|
45 |
model_name (str): The name of the evaluated model.
|
46 |
revision (str): The revision hash of the model.
|
47 |
precision (str): The precision with which the evaluation was run.
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
avg_summary_len (float): The average summary length.
|
52 |
|
53 |
Returns:
|
54 |
dict: A dictionary containing the structured evaluation results.
|
55 |
"""
|
|
|
56 |
results = {
|
57 |
"config": {
|
58 |
-
"model_dtype": precision,
|
59 |
-
"model_name": model_name,
|
60 |
-
"model_sha": revision
|
61 |
},
|
62 |
"results": {
|
63 |
-
"
|
64 |
-
|
65 |
-
},
|
66 |
-
"factual_consistency_rate": {
|
67 |
-
"factual_consistency_rate": round(factual_consistency_rate,1)
|
68 |
-
},
|
69 |
-
"answer_rate": {
|
70 |
-
"answer_rate": round(answer_rate*100,1)
|
71 |
-
},
|
72 |
-
"average_summary_length": {
|
73 |
-
"average_summary_length": round(avg_summary_len,1)
|
74 |
-
},
|
75 |
}
|
76 |
}
|
77 |
|
|
|
|
|
|
|
|
|
78 |
return results
|
|
|
35 |
return pairs
|
36 |
|
37 |
|
38 |
+
# def format_results(model_name: str, revision: str, precision: str,
|
39 |
+
# factual_consistency_rate: float, hallucination_rate: float,
|
40 |
+
# answer_rate: float, avg_summary_len: float) -> dict:
|
41 |
+
# """
|
42 |
+
# Formats the evaluation results into a structured dictionary.
|
43 |
+
#
|
44 |
+
# Args:
|
45 |
+
# model_name (str): The name of the evaluated model.
|
46 |
+
# revision (str): The revision hash of the model.
|
47 |
+
# precision (str): The precision with which the evaluation was run.
|
48 |
+
# factual_consistency_rate (float): The factual consistency rate.
|
49 |
+
# hallucination_rate (float): The hallucination rate.
|
50 |
+
# answer_rate (float): The answer rate.
|
51 |
+
# avg_summary_len (float): The average summary length.
|
52 |
+
#
|
53 |
+
# Returns:
|
54 |
+
# dict: A dictionary containing the structured evaluation results.
|
55 |
+
# """
|
56 |
+
# results = {
|
57 |
+
# "config": {
|
58 |
+
# "model_dtype": precision, # Precision with which you ran the evaluation
|
59 |
+
# "model_name": model_name, # Name of the model
|
60 |
+
# "model_sha": revision # Hash of the model
|
61 |
+
# },
|
62 |
+
# "results": {
|
63 |
+
# "hallucination_rate": {
|
64 |
+
# "hallucination_rate": round(hallucination_rate,3)
|
65 |
+
# },
|
66 |
+
# "factual_consistency_rate": {
|
67 |
+
# "factual_consistency_rate": round(factual_consistency_rate,1)
|
68 |
+
# },
|
69 |
+
# "answer_rate": {
|
70 |
+
# "answer_rate": round(answer_rate*100,1)
|
71 |
+
# },
|
72 |
+
# "average_summary_length": {
|
73 |
+
# "average_summary_length": round(avg_summary_len,1)
|
74 |
+
# },
|
75 |
+
# }
|
76 |
+
# }
|
77 |
+
#
|
78 |
+
# return results
|
79 |
+
|
80 |
+
def format_results(model_name: str, revision: str, precision: str, overall_js: float, overall_ci: tuple, **experiment_scores) -> dict:
|
81 |
"""
|
82 |
Formats the evaluation results into a structured dictionary.
|
83 |
|
|
|
85 |
model_name (str): The name of the evaluated model.
|
86 |
revision (str): The revision hash of the model.
|
87 |
precision (str): The precision with which the evaluation was run.
|
88 |
+
overall_js (float): The overall average JS divergence.
|
89 |
+
overall_ci (tuple): The confidence interval for the overall JS divergence.
|
90 |
+
experiment_scores: Experiment-specific scores and confidence intervals (E1, E1_ci, E2, E2_ci, ...).
|
|
|
91 |
|
92 |
Returns:
|
93 |
dict: A dictionary containing the structured evaluation results.
|
94 |
"""
|
95 |
+
# Initialize the base structure
|
96 |
results = {
|
97 |
"config": {
|
98 |
+
"model_dtype": precision, # Precision with which you ran the evaluation
|
99 |
+
"model_name": model_name, # Name of the model
|
100 |
+
"model_sha": revision # Hash of the model
|
101 |
},
|
102 |
"results": {
|
103 |
+
"overall_js_divergence": overall_js, # Overall JS divergence
|
104 |
+
"overall_confidence_interval": overall_ci, # Confidence interval for the overall JS divergence
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
}
|
106 |
}
|
107 |
|
108 |
+
# Add experiment-specific results to the dictionary
|
109 |
+
for exp_name, score in experiment_scores.items():
|
110 |
+
results["results"][exp_name] = score # Add each experiment score and its CI
|
111 |
+
|
112 |
return results
|
src/display/about.py
CHANGED
@@ -10,8 +10,29 @@ class Task:
|
|
10 |
|
11 |
class Tasks(Enum):
|
12 |
# task_key in the json file, metric_key in the json file, name to display in the leaderboard
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
# factual_consistency_rate = Task("factual_consistency_rate", "factual_consistency_rate", "Factual Consistency Rate (%)")
|
16 |
# answer_rate = Task("answer_rate", "answer_rate", "Answer Rate (%)")
|
17 |
# average_summary_length = Task("average_summary_length",
|
@@ -23,10 +44,7 @@ TITLE = """<h1 align="center" id="space-title">Humanlike Evaluation Model (HEM)
|
|
23 |
|
24 |
# What does your leaderboard evaluate?
|
25 |
INTRODUCTION_TEXT = """
|
26 |
-
This leaderboard (by [
|
27 |
-
The leaderboard utilizes [HHEM](https://huggingface.co/vectara/hallucination_evaluation_model), an open source hallucination detection model.<br>
|
28 |
-
An improved version (HHEM v2) is integrated into the [Vectara platform](https://console.vectara.com/signup/?utm_source=huggingface&utm_medium=space&utm_term=integration&utm_content=console&utm_campaign=huggingface-space-integration-console).
|
29 |
-
|
30 |
"""
|
31 |
|
32 |
# Which evaluations are you running? how can people reproduce what you have?
|
@@ -105,49 +123,24 @@ The results are structured in JSON as follows:
|
|
105 |
}
|
106 |
}
|
107 |
```
|
108 |
-
For additional queries or model submissions, please contact
|
109 |
"""
|
110 |
|
111 |
EVALUATION_QUEUE_TEXT = """
|
112 |
-
## Some good practices before submitting a model
|
113 |
-
|
114 |
-
### 1) Make sure you can load your model and tokenizer using AutoClasses:
|
115 |
-
```python
|
116 |
-
from transformers import AutoConfig, AutoModel, AutoTokenizer
|
117 |
-
config = AutoConfig.from_pretrained("your model name", revision=revision)
|
118 |
-
model = AutoModel.from_pretrained("your model name", revision=revision)
|
119 |
-
tokenizer = AutoTokenizer.from_pretrained("your model name", revision=revision)
|
120 |
-
```
|
121 |
-
If this step fails, follow the error messages to debug your model before submitting it. It's likely your model has been improperly uploaded.
|
122 |
-
|
123 |
-
Note: make sure your model is public!
|
124 |
-
Note: if your model needs `use_remote_code=True`, we do not support this option yet but we are working on adding it, stay posted!
|
125 |
-
|
126 |
-
### 2) Convert your model weights to [safetensors](https://huggingface.co/docs/safetensors/index)
|
127 |
-
It's a new format for storing weights which is safer and faster to load and use. It will also allow us to add the number of parameters of your model to the `Extended Viewer`!
|
128 |
-
|
129 |
-
### 3) Make sure your model has an open license!
|
130 |
-
This is a leaderboard for Open LLMs, and we'd love for as many people as possible to know they can use your model 🤗
|
131 |
-
|
132 |
-
### 4) Fill up your model card
|
133 |
-
When we add extra information about models to the leaderboard, it will be automatically taken from the model card
|
134 |
|
135 |
-
## In case of model failure
|
136 |
-
If your model is displayed in the `FAILED` category, its execution stopped.
|
137 |
-
Make sure you have followed the above steps first.
|
138 |
"""
|
139 |
|
140 |
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
|
141 |
CITATION_BUTTON_TEXT = r"""
|
142 |
@dataset{HughesBae2023,
|
143 |
-
author = {
|
144 |
-
title = {
|
145 |
-
year = {
|
146 |
-
month = {
|
147 |
-
publisher = {
|
148 |
doi = {},
|
149 |
-
url = {https://
|
150 |
-
abstract = {A leaderboard comparing LLM performance at
|
151 |
-
keywords = {nlp, llm,
|
152 |
license = {Apache-2.0},
|
153 |
}"""
|
|
|
10 |
|
11 |
class Tasks(Enum):
|
12 |
# task_key in the json file, metric_key in the json file, name to display in the leaderboard
|
13 |
+
Overall = Task("overall_js", "overall_js", "Overall Humanlike %")
|
14 |
+
Overall_ci = Task("overall_ci", "overall_ci", "Overall Humanlike %")
|
15 |
+
E1 = Task("E1", "E1", "E1 Humanlike %")
|
16 |
+
E1_ci = Task("E1", "E1_ci", "E1 CI")
|
17 |
+
E2 = Task("E2", "E2", "E2 Humanlike %")
|
18 |
+
E2_ci = Task("E2", "E2_ci", "E2 CI")
|
19 |
+
E3 = Task("E3", "E3", "E3 Humanlike %")
|
20 |
+
E3_ci = Task("E3", "E3_ci", "E3 CI")
|
21 |
+
E4 = Task("E4", "E4", "E4 Humanlike %")
|
22 |
+
E4_ci = Task("E4", "E4_ci", "E4 CI")
|
23 |
+
E5 = Task("E5", "E5", "E5 Humanlike %")
|
24 |
+
E5_ci = Task("E5", "E5_ci", "E5 CI")
|
25 |
+
E6 = Task("E6", "E6", "E6 Humanlike %")
|
26 |
+
E6_ci = Task("E6", "E6_ci", "E6 CI")
|
27 |
+
E7 = Task("E7", "E7", "E7 Humanlike %")
|
28 |
+
E7_ci = Task("E7", "E7_ci", "E7 CI")
|
29 |
+
E8 = Task("E8", "E8", "E8 Humanlike %")
|
30 |
+
E8_ci = Task("E8", "E8_ci", "E8 CI")
|
31 |
+
E9 = Task("E9", "E9", "E9 Humanlike %")
|
32 |
+
E9_ci = Task("E9", "E9_ci", "E9 CI")
|
33 |
+
E10 = Task("E10", "E10", "E10 Humanlike %")
|
34 |
+
E10_ci = Task("E10", "E10_ci", "E10 CI")
|
35 |
+
|
36 |
# factual_consistency_rate = Task("factual_consistency_rate", "factual_consistency_rate", "Factual Consistency Rate (%)")
|
37 |
# answer_rate = Task("answer_rate", "answer_rate", "Answer Rate (%)")
|
38 |
# average_summary_length = Task("average_summary_length",
|
|
|
44 |
|
45 |
# What does your leaderboard evaluate?
|
46 |
INTRODUCTION_TEXT = """
|
47 |
+
This leaderboard (by [Xufeng Duan](https://xufengduan.github.io/)) evaluates the similarities between human and model responses in language use <br>
|
|
|
|
|
|
|
48 |
"""
|
49 |
|
50 |
# Which evaluations are you running? how can people reproduce what you have?
|
|
|
123 |
}
|
124 |
}
|
125 |
```
|
126 |
+
For additional queries or model submissions, please contact xufeng.duan@link.cuhk.edu.hk.
|
127 |
"""
|
128 |
|
129 |
EVALUATION_QUEUE_TEXT = """
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
|
|
|
|
|
|
|
131 |
"""
|
132 |
|
133 |
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
|
134 |
CITATION_BUTTON_TEXT = r"""
|
135 |
@dataset{HughesBae2023,
|
136 |
+
author = {Xufeng Duan, Bei Xiao, Xuemei Tang, Zhenguang Cai},
|
137 |
+
title = {Humanlike Leaderboard},
|
138 |
+
year = {2024},
|
139 |
+
month = {8},
|
140 |
+
publisher = {},
|
141 |
doi = {},
|
142 |
+
url = {https://huggingface.co/spaces/Simondon/HumanLikeness},
|
143 |
+
abstract = {A leaderboard comparing LLM performance at humanlikeness in language use.},
|
144 |
+
keywords = {nlp, llm, psycholinguistics, nli, machine learning},
|
145 |
license = {Apache-2.0},
|
146 |
}"""
|
src/envs.py
CHANGED
@@ -5,8 +5,29 @@ from huggingface_hub import HfApi
|
|
5 |
|
6 |
# replace this with our token
|
7 |
# TOKEN = os.environ.get("HF_TOKEN", None)
|
8 |
-
TOKEN = os.getenv("
|
9 |
TOKEN1 = os.getenv("H4_TOKEN1")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
# print("H4_token:", TOKEN)
|
11 |
|
12 |
|
|
|
5 |
|
6 |
# replace this with our token
|
7 |
# TOKEN = os.environ.get("HF_TOKEN", None)
|
8 |
+
TOKEN = os.getenv("H4_TOKEN1")
|
9 |
TOKEN1 = os.getenv("H4_TOKEN1")
|
10 |
+
TOKEN2 = os.getenv("H4_TOKEN2")
|
11 |
+
TOKEN3 = os.getenv("H4_TOKEN3")
|
12 |
+
TOKEN4 = os.getenv("H4_TOKEN4")
|
13 |
+
TOKEN5 = os.getenv("H4_TOKEN5")
|
14 |
+
TOKEN6 = os.getenv("H4_TOKEN6")
|
15 |
+
TOKEN7 = os.getenv("H4_TOKEN7")
|
16 |
+
TOKEN8 = os.getenv("H4_TOKEN8")
|
17 |
+
TOKEN9 = os.getenv("H4_TOKEN9")
|
18 |
+
TOKEN10 = os.getenv("H4_TOKEN10")
|
19 |
+
TOKEN11 = os.getenv("H4_TOKEN11")
|
20 |
+
TOKEN12 = os.getenv("H4_TOKEN12")
|
21 |
+
TOKEN13 = os.getenv("H4_TOKEN13")
|
22 |
+
TOKEN14 = os.getenv("H4_TOKEN14")
|
23 |
+
TOKEN15 = os.getenv("H4_TOKEN15")
|
24 |
+
TOKEN16 = os.getenv("H4_TOKEN16")
|
25 |
+
TOKEN17 = os.getenv("H4_TOKEN17")
|
26 |
+
TOKEN18 = os.getenv("H4_TOKEN18")
|
27 |
+
TOKEN19 = os.getenv("H4_TOKEN19")
|
28 |
+
TOKEN20 = os.getenv("H4_TOKEN20")
|
29 |
+
|
30 |
+
|
31 |
# print("H4_token:", TOKEN)
|
32 |
|
33 |
|
src/populate.py
CHANGED
@@ -18,11 +18,15 @@ def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchm
|
|
18 |
df = pd.DataFrame.from_records(all_data_json)
|
19 |
print("all results:",df)
|
20 |
# exit()
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
-
# filter out if any of the benchmarks have not been produced
|
25 |
-
df = df[formatting.has_no_nan_values(df, benchmark_cols)]
|
26 |
return df
|
27 |
|
28 |
|
|
|
18 |
df = pd.DataFrame.from_records(all_data_json)
|
19 |
print("all results:",df)
|
20 |
# exit()
|
21 |
+
try:
|
22 |
+
df = df.sort_values(by=[utils.AutoEvalColumn.hallucination_rate.name], ascending=True)
|
23 |
+
df = df[cols].round(decimals=2)
|
24 |
+
# filter out if any of the benchmarks have not been produced
|
25 |
+
df = df[formatting.has_no_nan_values(df, benchmark_cols)]
|
26 |
+
except:
|
27 |
+
pass
|
28 |
+
|
29 |
|
|
|
|
|
30 |
return df
|
31 |
|
32 |
|