def is_summary_valid(summary: str) -> bool: """ Checks if the summary is valid. A summary is valid if it is not empty and contains at least five words. Args: summary (str): The summary to check. Returns: bool: True if the summary is valid, False otherwise. """ if isinstance(summary, str): words = summary.split() if len(words) >= 5: return True # print(summary) return False def create_pairs(df): """ Creates pairs of source and summary from the dataframe. Args: df (DataFrame): The dataframe containing source and summary columns. Returns: list: A list of pairs [source, summary]. """ pairs = [] for _, row in df.iterrows(): pairs.append([row['source'], row['summary']]) return pairs def format_results(model_name: str, revision: str, precision: str, factual_consistency_rate: float, hallucination_rate: float, answer_rate: float, avg_summary_len: float) -> dict: """ Formats the evaluation results into a structured dictionary. Args: model_name (str): The name of the evaluated model. revision (str): The revision hash of the model. precision (str): The precision with which the evaluation was run. factual_consistency_rate (float): The factual consistency rate. hallucination_rate (float): The hallucination rate. answer_rate (float): The answer rate. avg_summary_len (float): The average summary length. Returns: dict: A dictionary containing the structured evaluation results. """ results = { "config": { "model_dtype": precision, # Precision with which you ran the evaluation "model_name": model_name, # Name of the model "model_sha": revision # Hash of the model }, "results": { "hallucination_rate": { "hallucination_rate": round(hallucination_rate,3) }, "factual_consistency_rate": { "factual_consistency_rate": round(factual_consistency_rate,1) }, "answer_rate": { "answer_rate": round(answer_rate*100,1) }, "average_summary_length": { "average_summary_length": round(avg_summary_len,1) }, } } return results