File size: 11,899 Bytes
6c9cbc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
# flake8: noqa: E402
import os
import logging

import re_matching
from tools.sentence import split_by_language, sentence_split

logging.getLogger("numba").setLevel(logging.WARNING)
logging.getLogger("markdown_it").setLevel(logging.WARNING)
logging.getLogger("urllib3").setLevel(logging.WARNING)
logging.getLogger("matplotlib").setLevel(logging.WARNING)

logging.basicConfig(
    level=logging.INFO, format="| %(name)s | %(levelname)s | %(message)s"
)

logger = logging.getLogger(__name__)

import torch
import ssl
ssl._create_default_https_context = ssl._create_unverified_context
import nltk
nltk.download('cmudict')
import utils
from infer import infer, latest_version, get_net_g
import gradio as gr
import webbrowser
import numpy as np
from config import config

net_g = None

device = config.webui_config.device
if device == "mps":
    os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"


def generate_audio(
    slices,
    sdp_ratio,
    noise_scale,
    noise_scale_w,
    length_scale,
    speaker,
    language,
):
    audio_list = []
    silence = np.zeros(hps.data.sampling_rate // 2, dtype=np.int16)
    with torch.no_grad():
        for piece in slices:
            audio = infer(
                piece,
                sdp_ratio=sdp_ratio,
                noise_scale=noise_scale,
                noise_scale_w=noise_scale_w,
                length_scale=length_scale,
                sid=speaker,
                language=language,
                hps=hps,
                net_g=net_g,
                device=device,
            )
            audio16bit = gr.processing_utils.convert_to_16_bit_wav(audio)
            audio_list.append(audio16bit)
            audio_list.append(silence)  # 将静音添加到列表中
    return audio_list


def tts_split(
    text: str,
    speaker,
    sdp_ratio,
    noise_scale,
    noise_scale_w,
    length_scale,
    language,
    cut_by_sent,
    interval_between_para,
    interval_between_sent,
):
    if language == "mix":
        return ("invalid", None)
    while text.find("\n\n") != -1:
        text = text.replace("\n\n", "\n")
    para_list = re_matching.cut_para(text)
    audio_list = []
    if not cut_by_sent:
        for p in para_list:
            audio = infer(
                p,
                sdp_ratio=sdp_ratio,
                noise_scale=noise_scale,
                noise_scale_w=noise_scale_w,
                length_scale=length_scale,
                sid=speaker,
                language=language,
                hps=hps,
                net_g=net_g,
                device=device,
            )
            audio16bit = gr.processing_utils.convert_to_16_bit_wav(audio)
            audio_list.append(audio16bit)
            silence = np.zeros((int)(44100 * interval_between_para), dtype=np.int16)
            audio_list.append(silence)
    else:
        for p in para_list:
            audio_list_sent = []
            sent_list = re_matching.cut_sent(p)
            for s in sent_list:
                audio = infer(
                    s,
                    sdp_ratio=sdp_ratio,
                    noise_scale=noise_scale,
                    noise_scale_w=noise_scale_w,
                    length_scale=length_scale,
                    sid=speaker,
                    language=language,
                    hps=hps,
                    net_g=net_g,
                    device=device,
                )
                audio_list_sent.append(audio)
                silence = np.zeros((int)(44100 * interval_between_sent))
                audio_list_sent.append(silence)
            if (interval_between_para - interval_between_sent) > 0:
                silence = np.zeros(
                    (int)(44100 * (interval_between_para - interval_between_sent))
                )
                audio_list_sent.append(silence)
            audio16bit = gr.processing_utils.convert_to_16_bit_wav(
                np.concatenate(audio_list_sent)
            )  # 对完整句子做音量归一
            audio_list.append(audio16bit)
    audio_concat = np.concatenate(audio_list)
    return ("Success", (44100, audio_concat))


def tts_fn(
    text: str,
    speaker,
    sdp_ratio,
    noise_scale,
    noise_scale_w,
    length_scale,
    language,
):
    audio_list = []
    if language == "mix":
        bool_valid, str_valid = re_matching.validate_text(text)
        if not bool_valid:
            return str_valid, (
                hps.data.sampling_rate,
                np.concatenate([np.zeros(hps.data.sampling_rate // 2)]),
            )
        result = re_matching.text_matching(text)
        for one in result:
            _speaker = one.pop()
            for lang, content in one:
                audio_list.extend(
                    generate_audio(
                        content.split("|"),
                        sdp_ratio,
                        noise_scale,
                        noise_scale_w,
                        length_scale,
                        _speaker,
                        lang,
                    )
                )
    elif language.lower() == "auto":
        sentences_list = split_by_language(text, target_languages=["zh", "ja", "en"])
        for sentences, lang in sentences_list:
            lang = lang.upper()
            if lang == "JA":
                lang = "JP"
            sentences = sentence_split(sentences, max=250)
            for content in sentences:
                audio_list.extend(
                    generate_audio(
                        content.split("|"),
                        sdp_ratio,
                        noise_scale,
                        noise_scale_w,
                        length_scale,
                        speaker,
                        lang,
                    )
                )
    else:
        audio_list.extend(
            generate_audio(
                text.split("|"),
                sdp_ratio,
                noise_scale,
                noise_scale_w,
                length_scale,
                speaker,
                language,
            )
        )

    audio_concat = np.concatenate(audio_list)
    return "Success", (hps.data.sampling_rate, audio_concat)


if __name__ == "__main__":
    if config.webui_config.debug:
        logger.info("Enable DEBUG-LEVEL log")
        logging.basicConfig(level=logging.DEBUG)
    hps = utils.get_hparams_from_file(config.webui_config.config_path)
    # 若config.json中未指定版本则默认为最新版本
    version = hps.version if hasattr(hps, "version") else latest_version
    net_g = get_net_g(
        model_path=config.webui_config.model, version=version, device=device, hps=hps
    )
    speaker_ids = hps.data.spk2id
    speakers = list(speaker_ids.keys())
    languages = ["ZH", "JP", "EN", "auto", "mix"]
    with gr.Blocks() as app:
        with gr.Row():
            with gr.Column():
                gr.Markdown(value="""
               【AI星瞳①】在线语音合成(Bert-Vits2 2.0中日英)\n
                作者:Xz乔希 https://space.bilibili.com/5859321\n
                声音归属:星瞳_Official https://space.bilibili.com/401315430\n
                【AI星瞳②】https://www.modelscope.cn/studios/xzjosh/Star-Bert-VITS2\n
                【AI星瞳 1.0】https://www.modelscope.cn/studios/xzjosh/XingTong-Bert-VITS2\n
                【AI合集】https://www.modelscope.cn/studios/xzjosh/Bert-VITS2\n
                Bert-VITS2项目:https://github.com/Stardust-minus/Bert-VITS2\n
                使用本模型请严格遵守法律法规!\n
                发布二创作品请标注本项目作者及链接、作品使用Bert-VITS2 AI生成!\n
                【提示】手机端容易误触调节,请刷新恢复默认!每次生成的结果都不一样,效果不好请尝试多次生成与调节,选择最佳结果!\n             
                """)
                text = gr.TextArea(
                    label="输入文本内容",
                    placeholder="""
                推荐不同语言分开推理,因为无法连贯且可能影响最终效果!
                如果选择语言为\'auto\',有概率无法识别。
                如果选择语言为\'mix\',必须按照格式输入,否则报错:
                格式举例(zh是中文,jp是日语,en是英语;不区分大小写):
                 [说话人]<zh>你好 <jp>こんにちは <en>Hello
                另外,所有的语言选项都可以用'|'分割长段实现分句生成。
                    """,
                )
                speaker = gr.Dropdown(
                    choices=speakers, value=speakers[0], label="选择说话人"
                )
                sdp_ratio = gr.Slider(
                    minimum=0, maximum=1, value=0.2, step=0.01, label="SDP/DP混合比"
                )
                noise_scale = gr.Slider(
                    minimum=0.1, maximum=2, value=0.6, step=0.01, label="感情"
                )
                noise_scale_w = gr.Slider(
                    minimum=0.1, maximum=2, value=0.8, step=0.01, label="音素长度"
                )
                length_scale = gr.Slider(
                    minimum=0.1, maximum=2, value=1.0, step=0.01, label="语速"
                )
                language = gr.Dropdown(
                    choices=languages, value=languages[0], label="选择语言"
                )
                btn = gr.Button("点击生成", variant="primary")
            with gr.Column():
                with gr.Row():
                    with gr.Column():
                        interval_between_sent = gr.Slider(
                            minimum=0,
                            maximum=5,
                            value=0.2,
                            step=0.1,
                            label="句间停顿(秒),勾选按句切分才生效",
                        )
                        interval_between_para = gr.Slider(
                            minimum=0,
                            maximum=10,
                            value=1,
                            step=0.1,
                            label="段间停顿(秒),需要大于句间停顿才有效",
                        )
                        opt_cut_by_sent = gr.Checkbox(
                            label="按句切分    在按段落切分的基础上再按句子切分文本"
                        )
                        slicer = gr.Button("切分生成", variant="primary")
                text_output = gr.Textbox(label="状态信息")
                audio_output = gr.Audio(label="输出音频")
                # explain_image = gr.Image(
                #     label="参数解释信息",
                #     show_label=True,
                #     show_share_button=False,
                #     show_download_button=False,
                #     value=os.path.abspath("./img/参数说明.png"),
                # )
        btn.click(
            tts_fn,
            inputs=[
                text,
                speaker,
                sdp_ratio,
                noise_scale,
                noise_scale_w,
                length_scale,
                language,
            ],
            outputs=[text_output, audio_output],
        )

        slicer.click(
            tts_split,
            inputs=[
                text,
                speaker,
                sdp_ratio,
                noise_scale,
                noise_scale_w,
                length_scale,
                language,
                opt_cut_by_sent,
                interval_between_para,
                interval_between_sent,
            ],
            outputs=[text_output, audio_output],
        )

    print("推理页面已开启!")
    webbrowser.open(f"http://127.0.0.1:{config.webui_config.port}")
    app.launch(share=config.webui_config.share, server_port=config.webui_config.port)