File size: 12,687 Bytes
02259d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
import time,logging
import os
import random,traceback
import numpy as np
import torch
import torch.utils.data
from tqdm import tqdm

from module import commons
from module.mel_processing import spectrogram_torch
from text import cleaned_text_to_sequence
from utils import load_wav_to_torch, load_filepaths_and_text
import torch.nn.functional as F
from functools import lru_cache
import torch
import requests
from scipy.io import wavfile
from io import BytesIO
# from config import exp_dir
from my_utils import load_audio

class TextAudioSpeakerLoader(torch.utils.data.Dataset):
    """
        1) loads audio, speaker_id, text pairs
        2) normalizes text and converts them to sequences of integers
        3) computes spectrograms from audio files.
    """

    def __init__(self, hparams, val=False):
        exp_dir=hparams.exp_dir
        self.path2="%s/2-name2text.txt"%exp_dir
        self.path4="%s/4-cnhubert"%exp_dir
        self.path5="%s/5-wav32k"%exp_dir
        assert os.path.exists(self.path2)
        assert os.path.exists(self.path4)
        assert os.path.exists(self.path5)
        names4=set([name[:-3]for name in list(os.listdir(self.path4))])#去除.pt后缀
        names5=set(os.listdir(self.path5))
        self.phoneme_data={}
        with open(self.path2,"r",encoding="utf8")as f:
            lines=f.read().strip("\n").split("\n")

        for line in lines:
            tmp=line.split("\t")
            if(len(tmp)!=4):continue
            self.phoneme_data[tmp[0]]=[tmp[1]]

        self.audiopaths_sid_text=list(set(self.phoneme_data)&names4&names5)
        tmp=self.audiopaths_sid_text
        leng=len(tmp)
        min_num=100
        if(leng<min_num):
            self.audiopaths_sid_text=[]
            for _ in range(max(2, int(min_num / leng))):
                self.audiopaths_sid_text += tmp
        self.max_wav_value = hparams.max_wav_value
        self.sampling_rate = hparams.sampling_rate
        self.filter_length = hparams.filter_length
        self.hop_length = hparams.hop_length
        self.win_length = hparams.win_length
        self.sampling_rate = hparams.sampling_rate
        self.val = val

        random.seed(1234)
        random.shuffle(self.audiopaths_sid_text)

        print("phoneme_data_len:", len(self.phoneme_data.keys()))
        print("wav_data_len:", len(self.audiopaths_sid_text))

        audiopaths_sid_text_new = []
        lengths = []
        skipped_phone  = 0
        skipped_dur   = 0
        for audiopath in tqdm(self.audiopaths_sid_text):
            try:
                phoneme = self.phoneme_data[audiopath][0]
                phoneme = phoneme.split(' ')
                phoneme_ids = cleaned_text_to_sequence(phoneme)
            except Exception:
                print(f"{audiopath} not in self.phoneme_data !")
                skipped_phone  += 1
                continue
            size=os.path.getsize("%s/%s"%(self.path5,audiopath))
            duration = size / self.sampling_rate / 2
            if (54 > duration > 0.6 or self.val):
                audiopaths_sid_text_new.append([audiopath, phoneme_ids])
                lengths.append(size // (2 * self.hop_length))
            else:
                skipped_dur += 1
                continue
        print("skipped_phone: ", skipped_phone, ", skipped_dur: ", skipped_dur)
        print("total left: ", len(audiopaths_sid_text_new))
        assert len(audiopaths_sid_text_new)>1#至少能凑够batch size,这里todo
        self.audiopaths_sid_text = audiopaths_sid_text_new
        self.lengths = lengths

    def get_audio_text_speaker_pair(self, audiopath_sid_text):
        audiopath, phoneme_ids = audiopath_sid_text
        text = torch.FloatTensor(phoneme_ids)
        try:
            spec, wav = self.get_audio("%s/%s"%(self.path5,audiopath))
            with torch.no_grad():
                ssl = torch.load("%s/%s.pt"%(self.path4,audiopath),map_location="cpu")
                if(ssl.shape[-1]!=spec.shape[-1]):
                    typee=ssl.dtype
                    ssl=F.pad(ssl.float(),(0,1),mode="replicate").to(typee)
                ssl.requires_grad=False
        except:
            traceback.print_exc()
            spec = torch.zeros(1025, 100)
            wav = torch.zeros(1, 100*self.hop_length)
            ssl=torch.zeros(1,768,100)
            text=text[-1:]
            print("load audio or ssl error!!!!!!", audiopath)
        # print(ssl.requires_grad,spec.requires_grad,wav.requires_grad,text.requires_grad)
        return (ssl, spec, wav, text)

    def get_audio(self, filename):
        audio_array = load_audio(filename,self.sampling_rate)#load_audio的方法是已经归一化到-1~1之间的,不用再/32768
        # print(filename,audio_array.max(),audio_array.min(),audio_array.mean())
        audio=torch.FloatTensor(audio_array)#/32768
        audio_norm = audio
        audio_norm = audio_norm.unsqueeze(0)
        spec = spectrogram_torch(audio_norm, self.filter_length,self.sampling_rate, self.hop_length, self.win_length,center=False)
        spec = torch.squeeze(spec, 0)
        return spec, audio_norm

    def get_sid(self, sid):
        sid = torch.LongTensor([int(sid)])
        return sid

    def __getitem__(self, index):
        # with torch.no_grad():
            return self.get_audio_text_speaker_pair(self.audiopaths_sid_text[index])

    def __len__(self):
        return len(self.audiopaths_sid_text)

    def random_slice(self, ssl, wav, mel):
        assert abs(ssl.shape[-1]- wav.shape[-1]//self.hop_length) < 3, ("first", ssl.shape, wav.shape)

        len_mel = mel.shape[1]
        if self.val:
            reference_mel = mel[:, :len_mel//3]
            return reference_mel, ssl, wav, mel
        dir = random.randint(0, 1)
        sep_point = random.randint(int(len_mel//3), int(len_mel//3*2))

        if dir == 0:
            reference_mel = mel[:, :sep_point]
            ssl = ssl[:, :, sep_point:]
            wav2 = wav[:, sep_point*self.hop_length:]
            mel = mel[:, sep_point:]
        else:
            reference_mel = mel[:, sep_point:]
            ssl = ssl[:, :, :sep_point]
            wav2 = wav[:, :sep_point*self.hop_length]
            mel = mel[:, :sep_point]

        assert abs(ssl.shape[-1]- wav2.shape[-1]//self.hop_length) < 3, (ssl.shape, wav.shape,wav2.shape, mel.shape, sep_point,self.hop_length, sep_point*self.hop_length, dir)
        return reference_mel, ssl, wav2, mel


class TextAudioSpeakerCollate():
    """ Zero-pads model inputs and targets
    """

    def __init__(self, return_ids=False):
        self.return_ids = return_ids

    def __call__(self, batch):
        """Collate's training batch from normalized text, audio and speaker identities
        PARAMS
        ------
        batch: [text_normalized, spec_normalized, wav_normalized, sid]
        """
        # Right zero-pad all one-hot text sequences to max input length
        _, ids_sorted_decreasing = torch.sort(
            torch.LongTensor([x[1].size(1) for x in batch]),
            dim=0, descending=True)

        max_ssl_len = max([x[0].size(2) for x in batch])
        max_ssl_len = int(2 * ((max_ssl_len // 2) + 1))
        max_spec_len = max([x[1].size(1) for x in batch])
        max_spec_len = int(2 * ((max_spec_len // 2) + 1))
        max_wav_len = max([x[2].size(1) for x in batch])
        max_text_len = max([x[3].size(0) for x in batch])

        ssl_lengths = torch.LongTensor(len(batch))
        spec_lengths = torch.LongTensor(len(batch))
        wav_lengths = torch.LongTensor(len(batch))
        text_lengths = torch.LongTensor(len(batch))

        spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len)
        wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
        ssl_padded = torch.FloatTensor(len(batch), batch[0][0].size(1), max_ssl_len)
        text_padded = torch.LongTensor(len(batch),  max_text_len)

        spec_padded.zero_()
        wav_padded.zero_()
        ssl_padded.zero_()
        text_padded.zero_()

        for i in range(len(ids_sorted_decreasing)):
            row = batch[ids_sorted_decreasing[i]]

            ssl = row[0]
            ssl_padded[i, :, :ssl.size(2)] = ssl[0, :, :]
            ssl_lengths[i] = ssl.size(2)

            spec = row[1]
            spec_padded[i, :, :spec.size(1)] = spec
            spec_lengths[i] = spec.size(1)

            wav = row[2]
            wav_padded[i, :, :wav.size(1)] = wav
            wav_lengths[i] = wav.size(1)

            text = row[3]
            text_padded[i, :text.size(0)] = text
            text_lengths[i] = text.size(0)


        return ssl_padded, ssl_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, text_padded, text_lengths


class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
    """
    Maintain similar input lengths in a batch.
    Length groups are specified by boundaries.
    Ex) boundaries = [b1, b2, b3] -> any batch is included either {x | b1 < length(x) <=b2} or {x | b2 < length(x) <= b3}.

    It removes samples which are not included in the boundaries.
    Ex) boundaries = [b1, b2, b3] -> any x s.t. length(x) <= b1 or length(x) > b3 are discarded.
    """

    def __init__(self, dataset, batch_size, boundaries, num_replicas=None, rank=None, shuffle=True):
        super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle)
        self.lengths = dataset.lengths
        # print(233333333333333,self.lengths,dir(dataset))
        self.batch_size = batch_size
        self.boundaries = boundaries

        self.buckets, self.num_samples_per_bucket = self._create_buckets()
        self.total_size = sum(self.num_samples_per_bucket)
        self.num_samples = self.total_size // self.num_replicas

    def _create_buckets(self):
        buckets = [[] for _ in range(len(self.boundaries) - 1)]
        for i in range(len(self.lengths)):
            length = self.lengths[i]
            idx_bucket = self._bisect(length)
            if idx_bucket != -1:
                buckets[idx_bucket].append(i)

        for i in range(len(buckets) - 1, 0, -1):
        # for i in range(len(buckets) - 1, -1, -1):
            if len(buckets[i]) == 0:
                buckets.pop(i)
                self.boundaries.pop(i + 1)

        num_samples_per_bucket = []
        for i in range(len(buckets)):
            len_bucket = len(buckets[i])
            total_batch_size = self.num_replicas * self.batch_size
            rem = (total_batch_size - (len_bucket % total_batch_size)) % total_batch_size
            num_samples_per_bucket.append(len_bucket + rem)
        return buckets, num_samples_per_bucket

    def __iter__(self):
        # deterministically shuffle based on epoch
        g = torch.Generator()
        g.manual_seed(self.epoch)

        indices = []
        if self.shuffle:
            for bucket in self.buckets:
                indices.append(torch.randperm(len(bucket), generator=g).tolist())
        else:
            for bucket in self.buckets:
                indices.append(list(range(len(bucket))))

        batches = []
        for i in range(len(self.buckets)):
            bucket = self.buckets[i]
            len_bucket = len(bucket)
            ids_bucket = indices[i]
            num_samples_bucket = self.num_samples_per_bucket[i]

            # add extra samples to make it evenly divisible
            rem = num_samples_bucket - len_bucket
            ids_bucket = ids_bucket + ids_bucket * (rem // len_bucket) + ids_bucket[:(rem % len_bucket)]

            # subsample
            ids_bucket = ids_bucket[self.rank::self.num_replicas]

            # batching
            for j in range(len(ids_bucket) // self.batch_size):
                batch = [bucket[idx] for idx in ids_bucket[j * self.batch_size:(j + 1) * self.batch_size]]
                batches.append(batch)

        if self.shuffle:
            batch_ids = torch.randperm(len(batches), generator=g).tolist()
            batches = [batches[i] for i in batch_ids]
        self.batches = batches

        assert len(self.batches) * self.batch_size == self.num_samples
        return iter(self.batches)

    def _bisect(self, x, lo=0, hi=None):
        if hi is None:
            hi = len(self.boundaries) - 1

        if hi > lo:
            mid = (hi + lo) // 2
            if self.boundaries[mid] < x and x <= self.boundaries[mid + 1]:
                return mid
            elif x <= self.boundaries[mid]:
                return self._bisect(x, lo, mid)
            else:
                return self._bisect(x, mid + 1, hi)
        else:
            return -1

    def __len__(self):
        return self.num_samples // self.batch_size