File size: 13,671 Bytes
02259d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
import os
cnhubert_base_path = "pretrained_models/chinese-hubert-base"
bert_path = "pretrained_models/chinese-roberta-wwm-ext-large"

import gradio as gr
from transformers import AutoModelForMaskedLM, AutoTokenizer
import sys,torch,numpy as np
from pathlib import Path
import os,pdb,utils,librosa,math,traceback,requests,argparse,torch,multiprocessing,pandas as pd,torch.multiprocessing as mp,soundfile
# torch.backends.cuda.sdp_kernel("flash")
# torch.backends.cuda.enable_flash_sdp(True)
# torch.backends.cuda.enable_mem_efficient_sdp(True)  # Not avaliable if torch version is lower than 2.0
# torch.backends.cuda.enable_math_sdp(True)
from random import shuffle
from AR.utils import get_newest_ckpt
from glob import glob
from tqdm import tqdm
from feature_extractor import cnhubert
cnhubert.cnhubert_base_path=cnhubert_base_path
from io import BytesIO
from module.models import SynthesizerTrn
from AR.models.t2s_lightning_module import Text2SemanticLightningModule
from AR.utils.io import load_yaml_config
from text import cleaned_text_to_sequence
from text.cleaner import text_to_sequence, clean_text
from time import time as ttime
from module.mel_processing import spectrogram_torch
from my_utils import load_audio

import logging
logging.getLogger('httpx').setLevel(logging.WARNING)
logging.getLogger('httpcore').setLevel(logging.WARNING)
logging.getLogger('multipart').setLevel(logging.WARNING)

device = "cpu"
is_half = False

tokenizer = AutoTokenizer.from_pretrained(bert_path)
bert_model=AutoModelForMaskedLM.from_pretrained(bert_path)
if(is_half==True):bert_model=bert_model.half().to(device)
else:bert_model=bert_model.to(device)
# bert_model=bert_model.to(device)
def get_bert_feature(text, word2ph):
    with torch.no_grad():
        inputs = tokenizer(text, return_tensors="pt")
        for i in inputs:
            inputs[i] = inputs[i].to(device)#####输入是long不用管精度问题,精度随bert_model
        res = bert_model(**inputs, output_hidden_states=True)
        res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1]
    assert len(word2ph) == len(text)
    phone_level_feature = []
    for i in range(len(word2ph)):
        repeat_feature = res[i].repeat(word2ph[i], 1)
        phone_level_feature.append(repeat_feature)
    phone_level_feature = torch.cat(phone_level_feature, dim=0)
    # if(is_half==True):phone_level_feature=phone_level_feature.half()
    return phone_level_feature.T


def load_model(sovits_path, gpt_path):
    n_semantic = 1024
    dict_s2 = torch.load(sovits_path, map_location="cpu")
    hps = dict_s2["config"]

    class DictToAttrRecursive:
        def __init__(self, input_dict):
            for key, value in input_dict.items():
                if isinstance(value, dict):
                    # 如果值是字典,递归调用构造函数
                    setattr(self, key, DictToAttrRecursive(value))
                else:
                    setattr(self, key, value)

    hps = DictToAttrRecursive(hps)
    hps.model.semantic_frame_rate = "25hz"
    dict_s1 = torch.load(gpt_path, map_location="cpu")
    config = dict_s1["config"]
    ssl_model = cnhubert.get_model()
    if (is_half == True):
        ssl_model = ssl_model.half().to(device)
    else:
        ssl_model = ssl_model.to(device)

    vq_model = SynthesizerTrn(
        hps.data.filter_length // 2 + 1,
        hps.train.segment_size // hps.data.hop_length,
        n_speakers=hps.data.n_speakers,
        **hps.model)
    if (is_half == True):
        vq_model = vq_model.half().to(device)
    else:
        vq_model = vq_model.to(device)
    vq_model.eval()
    vq_model.load_state_dict(dict_s2["weight"], strict=False)
    hz = 50
    max_sec = config['data']['max_sec']
    # t2s_model = Text2SemanticLightningModule.load_from_checkpoint(checkpoint_path=gpt_path, config=config, map_location="cpu")#########todo
    t2s_model = Text2SemanticLightningModule(config, "ojbk", is_train=False)
    t2s_model.load_state_dict(dict_s1["weight"])
    if (is_half == True): t2s_model = t2s_model.half()
    t2s_model = t2s_model.to(device)
    t2s_model.eval()
    total = sum([param.nelement() for param in t2s_model.parameters()])
    print("Number of parameter: %.2fM" % (total / 1e6))
    return vq_model, ssl_model, t2s_model, hps, config, hz, max_sec


def get_spepc(hps, filename):
    audio=load_audio(filename,int(hps.data.sampling_rate))
    audio=torch.FloatTensor(audio)
    audio_norm = audio
    audio_norm = audio_norm.unsqueeze(0)
    spec = spectrogram_torch(audio_norm, hps.data.filter_length,hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length,center=False)
    return spec


def create_tts_fn(vq_model, ssl_model, t2s_model, hps, config, hz, max_sec):
    def tts_fn(ref_wav_path, prompt_text, prompt_language, text, text_language):
        t0 = ttime()
        prompt_text=prompt_text.strip("\n")
        prompt_language,text=prompt_language,text.strip("\n")
        print(text)
        if len(text) > 50:
            return f"Error: Text is too long, ({len(text)}>50)", None
        with torch.no_grad():
            wav16k, sr = librosa.load(ref_wav_path, sr=16000)  # 派蒙
            wav16k = torch.from_numpy(wav16k)
            if(is_half==True):wav16k=wav16k.half().to(device)
            else:wav16k=wav16k.to(device)
            ssl_content = ssl_model.model(wav16k.unsqueeze(0))["last_hidden_state"].transpose(1, 2)#.float()
            codes = vq_model.extract_latent(ssl_content)
            prompt_semantic = codes[0, 0]
        t1 = ttime()
        phones1, word2ph1, norm_text1 = clean_text(prompt_text, prompt_language)
        phones1=cleaned_text_to_sequence(phones1)
        texts=text.split("\n")
        audio_opt = []
        zero_wav=np.zeros(int(hps.data.sampling_rate*0.3),dtype=np.float16 if is_half==True else np.float32)
        for text in texts:
            phones2, word2ph2, norm_text2 = clean_text(text, text_language)
            phones2 = cleaned_text_to_sequence(phones2)
            if(prompt_language=="zh"):bert1 = get_bert_feature(norm_text1, word2ph1).to(device)
            else:bert1 = torch.zeros((1024, len(phones1)),dtype=torch.float16 if is_half==True else torch.float32).to(device)
            if(text_language=="zh"):bert2 = get_bert_feature(norm_text2, word2ph2).to(device)
            else:bert2 = torch.zeros((1024, len(phones2))).to(bert1)
            bert = torch.cat([bert1, bert2], 1)

            all_phoneme_ids = torch.LongTensor(phones1+phones2).to(device).unsqueeze(0)
            bert = bert.to(device).unsqueeze(0)
            all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device)
            prompt = prompt_semantic.unsqueeze(0).to(device)
            t2 = ttime()
            with torch.no_grad():
                # pred_semantic = t2s_model.model.infer(
                pred_semantic,idx = t2s_model.model.infer_panel(
                    all_phoneme_ids,
                    all_phoneme_len,
                    prompt,
                    bert,
                    # prompt_phone_len=ph_offset,
                    top_k=config['inference']['top_k'],
                    early_stop_num=hz * max_sec)
            t3 = ttime()
            # print(pred_semantic.shape,idx)
            pred_semantic = pred_semantic[:,-idx:].unsqueeze(0)  # .unsqueeze(0)#mq要多unsqueeze一次
            refer = get_spepc(hps, ref_wav_path)#.to(device)
            if(is_half==True):refer=refer.half().to(device)
            else:refer=refer.to(device)
            # audio = vq_model.decode(pred_semantic, all_phoneme_ids, refer).detach().cpu().numpy()[0, 0]
            audio = vq_model.decode(pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refer).detach().cpu().numpy()[0, 0]###试试重建不带上prompt部分
            audio_opt.append(audio)
            audio_opt.append(zero_wav)
            t4 = ttime()
        print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3))
        return "Success", (hps.data.sampling_rate,(np.concatenate(audio_opt,0)*32768).astype(np.int16))
    return tts_fn


splits={",","。","?","!",",",".","?","!","~",":",":","—","…",}#不考虑省略号
def split(todo_text):
    todo_text = todo_text.replace("……", "。").replace("——", ",")
    if (todo_text[-1] not in splits): todo_text += "。"
    i_split_head = i_split_tail = 0
    len_text = len(todo_text)
    todo_texts = []
    while (1):
        if (i_split_head >= len_text): break  # 结尾一定有标点,所以直接跳出即可,最后一段在上次已加入
        if (todo_text[i_split_head] in splits):
            i_split_head += 1
            todo_texts.append(todo_text[i_split_tail:i_split_head])
            i_split_tail = i_split_head
        else:
            i_split_head += 1
    return todo_texts


def change_reference_audio(prompt_text, transcripts):
    return transcripts[prompt_text]


models = []
models_info = {
    "alice": {
        "gpt_weight": "blue_archive/alice/alice-e15.ckpt",
        "sovits_weight": "blue_archive/alice/alice_e8_s216.pth",
        "title": "Blue Archive-天童アリス",
        "example_reference": "召喚にお応じろ!ゴーレムよ!主人の命令に従い!"
    },
    "yuuka": {
        "gpt_weight": "blue_archive/yuuka/yuuka-e15.ckpt",
        "sovits_weight": "blue_archive/yuuka/yuuka_e8_s208.pth",
        "title": "Blue Archive-早瀬ユウカ",
        "example_reference": "せ~ん~せ~い~。もう少し頑張ってください!"
    },
    "mika": {
        "gpt_weight": "blue_archive/mika/mika-e15.ckpt",
        "sovits_weight": "blue_archive/mika/mika_e8_s176.pth",
        "title": "Blue Archive-聖園ミカ",
        "example_reference": "あけましておめでとう、先生!こんな私だけど、今年もよろしくね☆"
    }
}
for i, info in models_info.items():
    title = info['title']
    cover = f"blue_archive/{i}/tachie.png"
    gpt_weight = info['gpt_weight']
    sovits_weight = info['sovits_weight']
    example_reference = info['example_reference']
    transcripts = {}
    with open(f"blue_archive/{i}/reference_audio/transcript.txt", 'r', encoding='utf-8') as file:
        for line in file:
            line = line.strip()
            wav, t = line.split("|")
            transcripts[t] = os.path.join(f"blue_archive/{i}/reference_audio", wav)

    vq_model, ssl_model, t2s_model, hps, config, hz, max_sec = load_model(sovits_weight, gpt_weight)


    models.append(
        (
            i,
            title,
            cover,
            transcripts,
            example_reference,
            create_tts_fn(
                vq_model, ssl_model, t2s_model, hps, config, hz, max_sec
            )
        )
    )
with gr.Blocks() as app:
    gr.Markdown(
        "# <center> GPT-SoVITS \n"
        "## <center> https://github.com/RVC-Boss/GPT-SoVITS\n"

    )
    with gr.Tabs():
        for (name, title, cover, transcripts, example_reference, tts_fn) in models:
            with gr.TabItem(name):
                with gr.Row():
                    gr.Markdown(
                        '<div align="center">'
                        f'<a><strong>{title}</strong></a>'
                        f'<img style="width:auto;height:300px;" src="file/{cover}">' if cover else ""
                                                                                                   '</div>'
                    )
                with gr.Row():
                    with gr.Column():
                        prompt_text = gr.Dropdown(
                            label="Transcript of the Reference Audio",
                            value=example_reference,
                            choices=transcripts.keys()
                        )
                        inp_ref_audio = gr.Audio(
                            label="Reference Audio",
                            type="filepath",
                            interactive=False,
                            value=transcripts[example_reference]
                        )
                        transcripts_state = gr.State(value=transcripts)
                        prompt_text.change(
                            fn=change_reference_audio,
                            inputs=[prompt_text, transcripts_state],
                            outputs=[inp_ref_audio]
                        )
                        prompt_language = gr.State(value="ja")
                    with gr.Column():
                        text = gr.Textbox(label="Input Text", value="はいきなり、春の嵐のように突然訪れた。")
                        text_language = gr.Dropdown(
                            label="Language",
                            choices=["zh", "en", "ja"],
                            value="ja"
                        )
                        inference_button = gr.Button("Generate", variant="primary")
                        om = gr.Textbox(label="Output Message")
                        output = gr.Audio(label="Output Audio")
                        inference_button.click(
                            fn=tts_fn,
                            inputs=[inp_ref_audio, prompt_text, prompt_language, text, text_language],
                            outputs=[om, output],
                            concurrency_limit=1
                        )

app.queue(max_size=30).launch()