# from transformers import pipeline, Conversation # import gradio as gr # import os # from getpass import getpass # model = os.getenv('bigcode/starcoder') # chatbot = pipeline(task="text-generation") # message_list = [] # response_list = [] # def YourCoder_chatbot(message, history): # python_code_examples = f""" # --------------------- # Example 1: Code Snippet # def calculate_average(numbers): # total = 0 # for number in numbers: # total += number # average = total / len(numbers) # return average # Code Review: Consider using the sum() function to calculate the total sum of the numbers # instead of manually iterating over the list. # This would make the code more concise and efficient. # --------------------- # Example 2: Code Snippet # def find_largest_number(numbers): # largest_number = numbers[0] # for number in numbers: # if number > largest_number: # largest_number = number # return largest_number # Code Review: Refactor the code using the max() function to find the largest number in the list. # This would simplify the code and improve its readability. # --------------------- # """ # prompt = f""" # I will provide you with code snippets, # and you will review them for potential issues and suggest improvements. # Please focus on providing concise and actionable feedback, highlighting areas # that could benefit from refactoring, optimization, or bug fixes. # Your feedback should be constructive and aim to enhance the overall quality and maintainability of the code. # Please avoid providing explanations for your suggestions unless specifically requested. Instead, focus on clearly identifying areas for improvement and suggesting alternative approaches or solutions. # Few good examples of Python code output between #### separator: # #### # {python_code_examples} # #### # Code Snippet is shared below, delimited with triple backticks: # ``` # {message} # ``` # """ # conversation = chatbot(prompt) # return conversation[0]['generated_text'] # chatbot = gr.ChatInterface(YourCoder_chatbot, title="YourCoder Chatbot", description="Enter piece of code to generate a code review!") # chatbot.launch() # import gradio as gr # # def YourCoder_chatbot(message, history): # # gr.load("models/bigcode/starcoder") # # chatbot = gr.ChatInterface(YourCoder_chatbot, title="YourCoder Chatbot", description="Enter piece of code to generate a code review!") # chatbot = gr.Interface(fn=gr.load("models/bigcode/starcoder"), inputs=[gr.Textbox(label="Insert Code Snippet",lines=5)], # outputs=[gr.Textbox(label="Review Here",lines=8)], # title="Code Reviewer" # ) # # gr.load("models/bigcode/starcoder").launch() # chatbot.launch() ##################### import os import gradio as gr from transformers import pipeline # Get the token from environment variables # token = os.getenv("HUGGINGFACE_TOKEN") # if token is None: # raise ValueError("Hugging Face token is not set in the environment variables.") # Load the model from the Hugging Face Model Hub with authentication generator = pipeline('text-generation', model='bigcode/starcoder', use_auth_token=token) # Define the prediction function def generate_text(prompt): result = generator(prompt, max_length=50) return result[0]['generated_text'] # Create the Gradio interface iface = gr.Interface(fn=generate_text, inputs="text", outputs="text") # Launch the app iface.launch()