from tqdm import tqdm import torch from torch.nn import CrossEntropyLoss def evaluate_model(model, tokenizer, dl): device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') #model = model.to(device) losses = [] for batch in dl: batch = tokenizer(batch, padding=True, return_tensors='pt', truncation=True, max_length=150) labels = torch.tensor([ [-100 if mask == 0 else token for mask, token in mask_and_tokens] for mask_and_tokens in [zip(masks, labels) for masks, labels in zip(batch['attention_mask'], batch['input_ids'])] ]) batch['labels'] = labels batch = {k: v.to(device) for k, v in batch.items()} with torch.no_grad(): outputs = model(batch['input_ids'], attention_mask=batch['attention_mask'], labels=batch['labels']) shift_logits = outputs.logits[..., :-1, :].contiguous() shift_labels = batch['labels'][..., 1:].contiguous() loss_fct = CrossEntropyLoss(reduction='none') loss = loss_fct(shift_logits.transpose(1,2), shift_labels) num_tokens = torch.sum(shift_labels != -100, dim=1) loss_sum = torch.sum(loss, dim=1) loss = loss_sum / num_tokens losses.append(loss) losses = torch.cat(losses) return losses