from fastapi import FastAPI, HTTPException, Request import uvicorn import requests import os import io import asyncio from typing import List, Dict, Any from tqdm import tqdm from llama_cpp import Llama import aiofiles import time from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity app = FastAPI() model_configs = [ {"repo_id": "Ffftdtd5dtft/gpt2-xl-Q2_K-GGUF", "filename": "gpt2-xl-q2_k.gguf", "name": "GPT-2 XL"}, {"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Instruct-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-instruct-q2_k.gguf", "name": "Meta Llama 3.1-8B Instruct"}, {"repo_id": "Ffftdtd5dtft/gemma-2-9b-it-Q2_K-GGUF", "filename": "gemma-2-9b-it-q2_k.gguf", "name": "Gemma 2-9B IT"}, {"repo_id": "Ffftdtd5dtft/gemma-2-27b-Q2_K-GGUF", "filename": "gemma-2-27b-q2_k.gguf", "name": "Gemma 2-27B"}, {"repo_id": "Ffftdtd5dtft/Phi-3-mini-128k-instruct-Q2_K-GGUF", "filename": "phi-3-mini-128k-instruct-q2_k.gguf", "name": "Phi-3 Mini 128K Instruct"}, {"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-q2_k.gguf", "name": "Meta Llama 3.1-8B"}, {"repo_id": "Ffftdtd5dtft/Qwen2-7B-Instruct-Q2_K-GGUF", "filename": "qwen2-7b-instruct-q2_k.gguf", "name": "Qwen2 7B Instruct"}, {"repo_id": "Ffftdtd5dtft/starcoder2-3b-Q2_K-GGUF", "filename": "starcoder2-3b-q2_k.gguf", "name": "Starcoder2 3B"}, {"repo_id": "Ffftdtd5dtft/Qwen2-1.5B-Instruct-Q2_K-GGUF", "filename": "qwen2-1.5b-instruct-q2_k.gguf", "name": "Qwen2 1.5B Instruct"}, {"repo_id": "Ffftdtd5dtft/starcoder2-15b-Q2_K-GGUF", "filename": "starcoder2-15b-q2_k.gguf", "name": "Starcoder2 15B"}, {"repo_id": "Ffftdtd5dtft/gemma-2-2b-it-Q2_K-GGUF", "filename": "gemma-2-2b-it-q2_k.gguf", "name": "Gemma 2-2B IT"}, {"repo_id": "Ffftdtd5dtft/sarvam-2b-v0.5-Q2_K-GGUF", "filename": "sarvam-2b-v0.5-q2_k.gguf", "name": "Sarvam 2B v0.5"}, {"repo_id": "Ffftdtd5dtft/WizardLM-13B-Uncensored-Q2_K-GGUF", "filename": "wizardlm-13b-uncensored-q2_k.gguf", "name": "WizardLM 13B Uncensored"}, {"repo_id": "Ffftdtd5dtft/WizardLM-7B-Uncensored-Q2_K-GGUF", "filename": "wizardlm-7b-uncensored-q2_k.gguf", "name": "WizardLM 7B Uncensored"}, {"repo_id": "Ffftdtd5dtft/Qwen2-Math-7B-Instruct-Q2_K-GGUF", "filename": "qwen2-math-7b-instruct-q2_k.gguf", "name": "Qwen2 Math 7B Instruct"} ] models_dir = "modelos" models = {} class ModelManager: def __init__(self): self.model_parts = {} self.load_lock = asyncio.Lock() self.index_lock = asyncio.Lock() self.part_size = 1024 * 1024 async def download_model(self, model_config): model_path = os.path.join(models_dir, model_config['filename']) if not os.path.exists(model_path): url = f"https://huggingface.co/{model_config['repo_id']}/resolve/main/{model_config['filename']}" print(f"Descargando modelo desde {url}") try: start_time = time.time() response = requests.get(url, stream=True) response.raise_for_status() total_size = int(response.headers.get('content-length', 0)) with open(model_path, 'wb') as f: with tqdm(total=total_size, unit='B', unit_scale=True, desc=f"Descargando {model_config['filename']}") as pbar: for chunk in response.iter_content(chunk_size=8192): f.write(chunk) pbar.update(len(chunk)) end_time = time.time() download_duration = end_time - start_time print(f"Descarga completa para {model_config['name']} en {download_duration:.2f} segundos") except requests.RequestException as e: raise HTTPException(status_code=500, detail=f"Error al descargar el modelo: {e}") else: print(f"Modelo {model_config['filename']} ya descargado.") return model_path async def download_all_models(self): async with self.load_lock: download_tasks = [self.download_model(config) for config in model_configs] await asyncio.gather(*download_tasks) async def load_all_models(self): async with self.load_lock: load_tasks = [self.load_model(config) for config in model_configs] await asyncio.gather(*load_tasks) async def load_model(self, model_config): model_name = model_config['name'] if model_name not in models: try: model_path = os.path.join(models_dir, model_config['filename']) start_time = time.time() print(f"Cargando modelo desde {model_path}") llama = Llama(model_path=model_path) end_time = time.time() load_duration = end_time - start_time if load_duration > 0: print(f"Modelo {model_name} tardó {load_duration:.2f} segundos en cargar") else: print(f"Modelo {model_name} cargado correctamente en {load_duration:.2f} segundos") tokenizer = llama.tokenizer models[model_name] = { 'model': llama, 'tokenizer': tokenizer, } except Exception as e: print(f"Error al cargar el modelo: {e}") async def generate_response(self, user_input, model_name=None, top_k=50, top_p=0.95, temperature=0.8): results = [] if model_name: model_data = models.get(model_name) if not model_data: return {"model_name": model_name, "error": "Modelo no encontrado"} try: tokenizer = model_data['tokenizer'] input_ids = tokenizer(user_input).input_ids outputs = model_data['model'].generate( [input_ids], top_k=top_k, top_p=top_p, temperature=temperature ) generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) parts = [] while len(generated_text) > 1000: part = generated_text[:1000] parts.append(part) generated_text = generated_text[1000:] parts.append(generated_text) results.append({ 'model_name': model_name, 'generated_text': generated_text, 'generated_text_parts': parts }) except Exception as e: return {'model_name': model_name, 'error': str(e)} else: for model_name, model_data in models.items(): try: tokenizer = model_data['tokenizer'] input_ids = tokenizer(user_input).input_ids outputs = model_data['model'].generate( [input_ids], top_k=top_k, top_p=top_p, temperature=temperature ) generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) parts = [] while len(generated_text) > 1000: part = generated_text[:1000] parts.append(part) generated_text = generated_text[1000:] parts.append(generated_text) results.append({ 'model_name': model_name, 'generated_text': generated_text, 'generated_text_parts': parts }) except Exception as e: results.append({'model_name': model_name, 'error': str(e)}) if len(results) > 1: best_response = self.choose_best_response(user_input, results) elif len(results) == 1: best_response = results[0] else: return {"model_name": "Error", "error": "No se pudo generar una respuesta con ningún modelo."} return best_response def choose_best_response(self, user_input, responses): valid_responses = [r for r in responses if 'error' not in r] tfidf = TfidfVectorizer() response_texts = [r['generated_text'] for r in valid_responses] tfidf_matrix = tfidf.fit_transform([user_input] + response_texts) similarities = cosine_similarity(tfidf_matrix[0:1], tfidf_matrix[1:]) best_index = similarities.argmax() best_response = valid_responses[best_index] return best_response @app.post("/generate/") async def generate(request: Request): data = await request.json() user_input = data.get('input', '') model_name = data.get('model') top_k = data.get('top_k', 50) top_p = data.get('top_p', 0.95) temperature = data.get('temperature', 0.8) if not user_input: raise HTTPException(status_code=400, detail="Se requiere una entrada de usuario.") try: response = await model_manager.generate_response(user_input, model_name, top_k, top_p, temperature) return {"response": response} except Exception as e: raise HTTPException(status_code=500, detail=str(e)) @app.get("/models") async def get_available_models(): return {"models": [config['name'] for config in model_configs]} async def load_models_on_startup(): global model_manager model_manager = ModelManager() await model_manager.download_all_models() await model_manager.load_all_models() @app.on_event("startup") async def startup_event(): await load_models_on_startup() print("Modelos cargados. API lista.") if __name__ == "__main__": if not os.path.exists(models_dir): os.makedirs(models_dir) uvicorn.run(app, host="0.0.0.0", port=7860) html_code = """