File size: 11,871 Bytes
8fda6be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import gradio as gr
from all_models import models
from externalmod import gr_Interface_load, save_image, randomize_seed
import asyncio
import os
from threading import RLock
lock = RLock()
HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None # If private or gated models aren't used, ENV setting is unnecessary.


def load_fn(models):
    global models_load
    models_load = {}
    for model in models:
        if model not in models_load.keys():
            try:
                m = gr_Interface_load(f'models/{model}', hf_token=HF_TOKEN)
            except Exception as error:
                print(error)
                m = gr.Interface(lambda: None, ['text'], ['image'])
            models_load.update({model: m})


load_fn(models)


num_models = 6
max_images = 6
inference_timeout = 300
default_models = models[:num_models]
MAX_SEED = 2**32-1


def extend_choices(choices):
    return choices[:num_models] + (num_models - len(choices[:num_models])) * ['NA']


def update_imgbox(choices):
    choices_plus = extend_choices(choices[:num_models])
    return [gr.Image(None, label=m, visible=(m!='NA')) for m in choices_plus]


def random_choices():
    import random
    random.seed()
    return random.choices(models, k=num_models)


# https://huggingface.co/docs/api-inference/detailed_parameters
# https://huggingface.co/docs/huggingface_hub/package_reference/inference_client
async def infer(model_str, prompt, nprompt="", height=0, width=0, steps=0, cfg=0, seed=-1, timeout=inference_timeout):
    kwargs = {}
    if height > 0: kwargs["height"] = height
    if width > 0: kwargs["width"] = width
    if steps > 0: kwargs["num_inference_steps"] = steps
    if cfg > 0: cfg = kwargs["guidance_scale"] = cfg
    if seed == -1: kwargs["seed"] = randomize_seed()
    else: kwargs["seed"] = seed
    task = asyncio.create_task(asyncio.to_thread(models_load[model_str].fn,
                               prompt=prompt, negative_prompt=nprompt, **kwargs, token=HF_TOKEN))
    await asyncio.sleep(0)
    try:
        result = await asyncio.wait_for(task, timeout=timeout)
    except asyncio.TimeoutError as e:
        print(e)
        print(f"Task timed out: {model_str}")
        if not task.done(): task.cancel()
        result = None
        raise Exception(f"Task timed out: {model_str}") from e
    except Exception as e:
        print(e)
        if not task.done(): task.cancel()
        result = None
        raise Exception() from e
    if task.done() and result is not None and not isinstance(result, tuple):
        with lock:
            png_path = "image.png"
            image = save_image(result, png_path, model_str, prompt, nprompt, height, width, steps, cfg, seed)
        return image
    return None


def gen_fn(model_str, prompt, nprompt="", height=0, width=0, steps=0, cfg=0, seed=-1):
    try:
        loop = asyncio.new_event_loop()
        result = loop.run_until_complete(infer(model_str, prompt, nprompt,
                                         height, width, steps, cfg, seed, inference_timeout))
    except (Exception, asyncio.CancelledError) as e:
        print(e)
        print(f"Task aborted: {model_str}")
        result = None
        raise gr.Error(f"Task aborted: {model_str}, Error: {e}")
    finally:
        loop.close()
    return result


def add_gallery(image, model_str, gallery):
    if gallery is None: gallery = []
    with lock:
        if image is not None: gallery.insert(0, (image, model_str))
    return gallery


CSS="""

.gradio-container { max-width: 1200px; margin: 0 auto; !important; }

.output { width=112px; height=112px; max_width=112px; max_height=112px; !important; }

.gallery { min_width=512px; min_height=512px; max_height=1024px; !important; }

.guide { text-align: center; !important; }

"""


with gr.Blocks(theme='Nymbo/Nymbo_Theme', fill_width=True, css=CSS) as demo:
    gr.HTML(
    """

        <div>

        <p> <center>For simultaneous generations without hidden queue check out <a href="https://huggingface.co/spaces/Yntec/ToyWorld">Toy World</a>! For more options like single model x6 check out <a href="https://huggingface.co/spaces/John6666/Diffusion80XX4sg">Diffusion80XX4sg</a> by John6666!</center>

        </p></div>

    """
)  
    with gr.Tab('Huggingface Diffusion'):
        with gr.Column(scale=2):
            with gr.Group():
                txt_input = gr.Textbox(label='Your prompt:', lines=4)
                neg_input = gr.Textbox(label='Negative prompt:', lines=1)
                with gr.Accordion("Advanced", open=False, visible=True):
                    with gr.Row():
                        width = gr.Slider(label="Width", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
                        height = gr.Slider(label="Height", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
                    with gr.Row():
                        steps = gr.Slider(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0)
                        cfg = gr.Slider(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0)
                        seed = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1)
                        seed_rand = gr.Button("Randomize Seed 🎲", size="sm", variant="secondary")
                        seed_rand.click(randomize_seed, None, [seed], queue=False)
            with gr.Row():
                gen_button = gr.Button(f'Generate up to {int(num_models)} images in up to 3 minutes total', variant='primary', scale=3)
                random_button = gr.Button(f'Random {int(num_models)} 🎲', variant='secondary', scale=1)
                #stop_button = gr.Button('Stop', variant='stop', interactive=False, scale=1)
                #gen_button.click(lambda: gr.update(interactive=True), None, stop_button)
            gr.Markdown("Scroll down to see more images and select models.", elem_classes="guide")

        with gr.Column(scale=1):
            with gr.Group():
                with gr.Row():
                    output = [gr.Image(label=m, show_download_button=True, elem_classes="output",
                              interactive=False, min_width=80, show_share_button=False, format="png",
                              visible=True) for m in default_models]
                    current_models = [gr.Textbox(m, visible=False) for m in default_models]

        with gr.Column(scale=2):
            gallery = gr.Gallery(label="Output", show_download_button=True, elem_classes="gallery",
                                interactive=False, show_share_button=True, container=True, format="png",
                                preview=True, object_fit="cover", columns=2, rows=2) 

        for m, o in zip(current_models, output):
            gen_event = gr.on(triggers=[gen_button.click, txt_input.submit], fn=gen_fn,
                              inputs=[m, txt_input, neg_input, height, width, steps, cfg, seed], outputs=[o],
                              concurrency_limit=None, queue=False) # Be sure to delete ", queue=False" when activating the stop button
            o.change(add_gallery, [o, m, gallery], [gallery])
            #stop_button.click(lambda: gr.update(interactive=False), None, stop_button, cancels=[gen_event])

        with gr.Column(scale=4):
            with gr.Accordion('Model selection'):
                model_choice = gr.CheckboxGroup(models, label = f'Choose up to {int(num_models)} different models from the {len(models)} available!', value=default_models, interactive=True)
                model_choice.change(update_imgbox, model_choice, output)
                model_choice.change(extend_choices, model_choice, current_models)
                random_button.click(random_choices, None, model_choice)

    with gr.Tab('Single model'):
        with gr.Column(scale=2):
            model_choice2 = gr.Dropdown(models, label='Choose model', value=models[0])
            with gr.Group():
                txt_input2 = gr.Textbox(label='Your prompt:', lines=4)
                neg_input2 = gr.Textbox(label='Negative prompt:', lines=1)
                with gr.Accordion("Advanced", open=False, visible=True):
                    with gr.Row():
                        width2 = gr.Slider(label="Width", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
                        height2 = gr.Slider(label="Height", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
                    with gr.Row():
                        steps2 = gr.Slider(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0)
                        cfg2 = gr.Slider(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0)
                        seed2 = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1)
                        seed_rand2 = gr.Button("Randomize Seed 🎲", size="sm", variant="secondary")
                        seed_rand2.click(randomize_seed, None, [seed2], queue=False)
            num_images = gr.Slider(1, max_images, value=max_images, step=1, label='Number of images')
            with gr.Row():
                gen_button2 = gr.Button('Generate', variant='primary', scale=2)
                #stop_button2 = gr.Button('Stop', variant='stop', interactive=False, scale=1)
                #gen_button2.click(lambda: gr.update(interactive=True), None, stop_button2)

        with gr.Column(scale=1):
            with gr.Group():
                with gr.Row():
                    output2 = [gr.Image(label='', show_download_button=True, elem_classes="output",
                               interactive=False, min_width=80, visible=True, format="png",
                               show_share_button=False, show_label=False) for _ in range(max_images)]

        with gr.Column(scale=2):
            gallery2 = gr.Gallery(label="Output", show_download_button=True, elem_classes="gallery",
                                interactive=False, show_share_button=True, container=True, format="png",
                                preview=True, object_fit="cover", columns=2, rows=2) 

        for i, o in enumerate(output2):
            img_i = gr.Number(i, visible=False)
            num_images.change(lambda i, n: gr.update(visible = (i < n)), [img_i, num_images], o, queue=False)
            gen_event2 = gr.on(triggers=[gen_button2.click, txt_input2.submit],
                               fn=lambda i, n, m, t1, t2, n1, n2, n3, n4, n5: gen_fn(m, t1, t2, n1, n2, n3, n4, n5) if (i < n) else None,
                               inputs=[img_i, num_images, model_choice2, txt_input2, neg_input2,
                                       height2, width2, steps2, cfg2, seed2], outputs=[o],
                                       concurrency_limit=None, queue=False)  # Be sure to delete ", queue=False" when activating the stop button
            o.change(add_gallery, [o, model_choice2, gallery2], [gallery2])
            #stop_button2.click(lambda: gr.update(interactive=False), None, stop_button2, cancels=[gen_event2])

    gr.Markdown("Based on the [TestGen](https://huggingface.co/spaces/derwahnsinn/TestGen) Space by derwahnsinn, the [SpacIO](https://huggingface.co/spaces/RdnUser77/SpacIO_v1) Space by RdnUser77 and Omnibus's Maximum Multiplier!")

demo.queue(default_concurrency_limit=200, max_size=200)
demo.launch(show_api=False, max_threads=400)
# https://github.com/gradio-app/gradio/issues/6339