Spaces:
Runtime error
Runtime error
File size: 11,871 Bytes
8fda6be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
import gradio as gr
from all_models import models
from externalmod import gr_Interface_load, save_image, randomize_seed
import asyncio
import os
from threading import RLock
lock = RLock()
HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None # If private or gated models aren't used, ENV setting is unnecessary.
def load_fn(models):
global models_load
models_load = {}
for model in models:
if model not in models_load.keys():
try:
m = gr_Interface_load(f'models/{model}', hf_token=HF_TOKEN)
except Exception as error:
print(error)
m = gr.Interface(lambda: None, ['text'], ['image'])
models_load.update({model: m})
load_fn(models)
num_models = 6
max_images = 6
inference_timeout = 300
default_models = models[:num_models]
MAX_SEED = 2**32-1
def extend_choices(choices):
return choices[:num_models] + (num_models - len(choices[:num_models])) * ['NA']
def update_imgbox(choices):
choices_plus = extend_choices(choices[:num_models])
return [gr.Image(None, label=m, visible=(m!='NA')) for m in choices_plus]
def random_choices():
import random
random.seed()
return random.choices(models, k=num_models)
# https://huggingface.co/docs/api-inference/detailed_parameters
# https://huggingface.co/docs/huggingface_hub/package_reference/inference_client
async def infer(model_str, prompt, nprompt="", height=0, width=0, steps=0, cfg=0, seed=-1, timeout=inference_timeout):
kwargs = {}
if height > 0: kwargs["height"] = height
if width > 0: kwargs["width"] = width
if steps > 0: kwargs["num_inference_steps"] = steps
if cfg > 0: cfg = kwargs["guidance_scale"] = cfg
if seed == -1: kwargs["seed"] = randomize_seed()
else: kwargs["seed"] = seed
task = asyncio.create_task(asyncio.to_thread(models_load[model_str].fn,
prompt=prompt, negative_prompt=nprompt, **kwargs, token=HF_TOKEN))
await asyncio.sleep(0)
try:
result = await asyncio.wait_for(task, timeout=timeout)
except asyncio.TimeoutError as e:
print(e)
print(f"Task timed out: {model_str}")
if not task.done(): task.cancel()
result = None
raise Exception(f"Task timed out: {model_str}") from e
except Exception as e:
print(e)
if not task.done(): task.cancel()
result = None
raise Exception() from e
if task.done() and result is not None and not isinstance(result, tuple):
with lock:
png_path = "image.png"
image = save_image(result, png_path, model_str, prompt, nprompt, height, width, steps, cfg, seed)
return image
return None
def gen_fn(model_str, prompt, nprompt="", height=0, width=0, steps=0, cfg=0, seed=-1):
try:
loop = asyncio.new_event_loop()
result = loop.run_until_complete(infer(model_str, prompt, nprompt,
height, width, steps, cfg, seed, inference_timeout))
except (Exception, asyncio.CancelledError) as e:
print(e)
print(f"Task aborted: {model_str}")
result = None
raise gr.Error(f"Task aborted: {model_str}, Error: {e}")
finally:
loop.close()
return result
def add_gallery(image, model_str, gallery):
if gallery is None: gallery = []
with lock:
if image is not None: gallery.insert(0, (image, model_str))
return gallery
CSS="""
.gradio-container { max-width: 1200px; margin: 0 auto; !important; }
.output { width=112px; height=112px; max_width=112px; max_height=112px; !important; }
.gallery { min_width=512px; min_height=512px; max_height=1024px; !important; }
.guide { text-align: center; !important; }
"""
with gr.Blocks(theme='Nymbo/Nymbo_Theme', fill_width=True, css=CSS) as demo:
gr.HTML(
"""
<div>
<p> <center>For simultaneous generations without hidden queue check out <a href="https://huggingface.co/spaces/Yntec/ToyWorld">Toy World</a>! For more options like single model x6 check out <a href="https://huggingface.co/spaces/John6666/Diffusion80XX4sg">Diffusion80XX4sg</a> by John6666!</center>
</p></div>
"""
)
with gr.Tab('Huggingface Diffusion'):
with gr.Column(scale=2):
with gr.Group():
txt_input = gr.Textbox(label='Your prompt:', lines=4)
neg_input = gr.Textbox(label='Negative prompt:', lines=1)
with gr.Accordion("Advanced", open=False, visible=True):
with gr.Row():
width = gr.Slider(label="Width", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
height = gr.Slider(label="Height", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
with gr.Row():
steps = gr.Slider(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0)
cfg = gr.Slider(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0)
seed = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1)
seed_rand = gr.Button("Randomize Seed 🎲", size="sm", variant="secondary")
seed_rand.click(randomize_seed, None, [seed], queue=False)
with gr.Row():
gen_button = gr.Button(f'Generate up to {int(num_models)} images in up to 3 minutes total', variant='primary', scale=3)
random_button = gr.Button(f'Random {int(num_models)} 🎲', variant='secondary', scale=1)
#stop_button = gr.Button('Stop', variant='stop', interactive=False, scale=1)
#gen_button.click(lambda: gr.update(interactive=True), None, stop_button)
gr.Markdown("Scroll down to see more images and select models.", elem_classes="guide")
with gr.Column(scale=1):
with gr.Group():
with gr.Row():
output = [gr.Image(label=m, show_download_button=True, elem_classes="output",
interactive=False, min_width=80, show_share_button=False, format="png",
visible=True) for m in default_models]
current_models = [gr.Textbox(m, visible=False) for m in default_models]
with gr.Column(scale=2):
gallery = gr.Gallery(label="Output", show_download_button=True, elem_classes="gallery",
interactive=False, show_share_button=True, container=True, format="png",
preview=True, object_fit="cover", columns=2, rows=2)
for m, o in zip(current_models, output):
gen_event = gr.on(triggers=[gen_button.click, txt_input.submit], fn=gen_fn,
inputs=[m, txt_input, neg_input, height, width, steps, cfg, seed], outputs=[o],
concurrency_limit=None, queue=False) # Be sure to delete ", queue=False" when activating the stop button
o.change(add_gallery, [o, m, gallery], [gallery])
#stop_button.click(lambda: gr.update(interactive=False), None, stop_button, cancels=[gen_event])
with gr.Column(scale=4):
with gr.Accordion('Model selection'):
model_choice = gr.CheckboxGroup(models, label = f'Choose up to {int(num_models)} different models from the {len(models)} available!', value=default_models, interactive=True)
model_choice.change(update_imgbox, model_choice, output)
model_choice.change(extend_choices, model_choice, current_models)
random_button.click(random_choices, None, model_choice)
with gr.Tab('Single model'):
with gr.Column(scale=2):
model_choice2 = gr.Dropdown(models, label='Choose model', value=models[0])
with gr.Group():
txt_input2 = gr.Textbox(label='Your prompt:', lines=4)
neg_input2 = gr.Textbox(label='Negative prompt:', lines=1)
with gr.Accordion("Advanced", open=False, visible=True):
with gr.Row():
width2 = gr.Slider(label="Width", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
height2 = gr.Slider(label="Height", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
with gr.Row():
steps2 = gr.Slider(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0)
cfg2 = gr.Slider(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0)
seed2 = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1)
seed_rand2 = gr.Button("Randomize Seed 🎲", size="sm", variant="secondary")
seed_rand2.click(randomize_seed, None, [seed2], queue=False)
num_images = gr.Slider(1, max_images, value=max_images, step=1, label='Number of images')
with gr.Row():
gen_button2 = gr.Button('Generate', variant='primary', scale=2)
#stop_button2 = gr.Button('Stop', variant='stop', interactive=False, scale=1)
#gen_button2.click(lambda: gr.update(interactive=True), None, stop_button2)
with gr.Column(scale=1):
with gr.Group():
with gr.Row():
output2 = [gr.Image(label='', show_download_button=True, elem_classes="output",
interactive=False, min_width=80, visible=True, format="png",
show_share_button=False, show_label=False) for _ in range(max_images)]
with gr.Column(scale=2):
gallery2 = gr.Gallery(label="Output", show_download_button=True, elem_classes="gallery",
interactive=False, show_share_button=True, container=True, format="png",
preview=True, object_fit="cover", columns=2, rows=2)
for i, o in enumerate(output2):
img_i = gr.Number(i, visible=False)
num_images.change(lambda i, n: gr.update(visible = (i < n)), [img_i, num_images], o, queue=False)
gen_event2 = gr.on(triggers=[gen_button2.click, txt_input2.submit],
fn=lambda i, n, m, t1, t2, n1, n2, n3, n4, n5: gen_fn(m, t1, t2, n1, n2, n3, n4, n5) if (i < n) else None,
inputs=[img_i, num_images, model_choice2, txt_input2, neg_input2,
height2, width2, steps2, cfg2, seed2], outputs=[o],
concurrency_limit=None, queue=False) # Be sure to delete ", queue=False" when activating the stop button
o.change(add_gallery, [o, model_choice2, gallery2], [gallery2])
#stop_button2.click(lambda: gr.update(interactive=False), None, stop_button2, cancels=[gen_event2])
gr.Markdown("Based on the [TestGen](https://huggingface.co/spaces/derwahnsinn/TestGen) Space by derwahnsinn, the [SpacIO](https://huggingface.co/spaces/RdnUser77/SpacIO_v1) Space by RdnUser77 and Omnibus's Maximum Multiplier!")
demo.queue(default_concurrency_limit=200, max_size=200)
demo.launch(show_api=False, max_threads=400)
# https://github.com/gradio-app/gradio/issues/6339
|