Spaces:
Runtime error
Runtime error
File size: 5,552 Bytes
aac338f d560905 aac338f bbc9212 aac338f bbc9212 aac338f bbc9212 aac338f bbc9212 a1090fa d560905 aac338f bbc9212 aac338f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
import gradio as gr
from random import randint
from all_models import models
from externalmod import gr_Interface_load, randomize_seed
import asyncio
import os
from threading import RLock
lock = RLock()
HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None # If private or gated models aren't used, ENV setting is unnecessary.
def load_fn(models):
global models_load
models_load = {}
for model in models:
if model not in models_load.keys():
try:
m = gr_Interface_load(f'models/{model}', hf_token=HF_TOKEN)
except Exception as error:
print(error)
m = gr.Interface(lambda: None, ['text'], ['image'])
models_load.update({model: m})
load_fn(models)
num_models = 6
default_models = models[:num_models]
inference_timeout = 600
MAX_SEED=3999999999
def extend_choices(choices):
return choices[:num_models] + (num_models - len(choices[:num_models])) * ['NA']
def update_imgbox(choices):
choices_plus = extend_choices(choices[:num_models])
return [gr.Image(None, label=m, visible=(m!='NA')) for m in choices_plus]
async def infer(model_str, prompt, seed=1, timeout=inference_timeout):
from pathlib import Path
kwargs = {}
noise = ""
kwargs["seed"] = seed
task = asyncio.create_task(asyncio.to_thread(models_load[model_str].fn,
prompt=f'{prompt} {noise}', **kwargs, token=HF_TOKEN))
await asyncio.sleep(0)
try:
result = await asyncio.wait_for(task, timeout=timeout)
except (Exception, asyncio.TimeoutError) as e:
print(e)
print(f"Task timed out: {model_str}")
if not task.done(): task.cancel()
result = None
if task.done() and result is not None:
with lock:
png_path = "image.png"
result.save(png_path)
image = str(Path(png_path).resolve())
return image
return None
def gen_fnseed(model_str, prompt, seed=1):
if model_str == 'NA':
return None
try:
loop = asyncio.new_event_loop()
result = loop.run_until_complete(infer(model_str, prompt, seed, inference_timeout))
except (Exception, asyncio.CancelledError) as e:
print(e)
print(f"Task aborted: {model_str}")
result = None
finally:
loop.close()
return result
with gr.Blocks() as demo:
with gr.Tab('🤗 Huggingface Diffusion 🤗'):
txt_input = gr.Textbox(label='Your prompt:', lines=4)
gen_button = gr.Button('Generate up to 6 images in up to 3 minutes total')
#stop_button = gr.Button('Stop', variant = 'secondary', interactive = False)
seed = gr.Slider(label="Use a seed to replicate the same image later", info="Max 3999999999", minimum=0, maximum=MAX_SEED, step=1, value=1)
seed_rand = gr.Button("Randomize Seed 🎲", size="sm", variant="secondary")
seed_rand.click(randomize_seed, None, [seed], queue=False)
gen_button.click(lambda s: gr.update(interactive = True), None)
gr.HTML(
"""
<div style="text-align: center; max-width: 1200px; margin: 0 auto;">
<div>
<body>
<div class="center"><p style="margin-bottom: 10px; color: #000000;">Scroll down to see more images and select models.</p>
</div>
</body>
</div>
</div>
"""
)
with gr.Row():
output = [gr.Image(label = m, min_width=480) for m in default_models]
current_models = [gr.Textbox(m, visible = False) for m in default_models]
for m, o in zip(current_models, output):
gen_event = gr.on(triggers=[gen_button.click, txt_input.submit], fn=gen_fnseed,
inputs=[m, txt_input, seed], outputs=[o], concurrency_limit=None, queue=False)
#stop_button.click(lambda s: gr.update(interactive = False), None, stop_button, cancels = [gen_event])
with gr.Accordion('Model selection'):
model_choice = gr.CheckboxGroup(models, label = f'Choose up to {int(num_models)} different models from the {len(models)} available!', value=default_models, interactive=True)
#model_choice = gr.CheckboxGroup(models, label = f'Choose up to {num_models} different models from the 2 available! Untick them to only use one!', value = default_models, multiselect = True, max_choices = num_models, interactive = True, filterable = False)
model_choice.change(update_imgbox, model_choice, output)
model_choice.change(extend_choices, model_choice, current_models)
with gr.Row():
gr.HTML(
"""
<div class="footer">
<p> Based on the <a href="https://huggingface.co/spaces/John6666/hfd_test_nostopbutton">Huggingface NoStopButton</a> Space by John6666, <a href="https://huggingface.co/spaces/derwahnsinn/TestGen">TestGen</a> Space by derwahnsinn, the <a href="https://huggingface.co/spaces/RdnUser77/SpacIO_v1">SpacIO</a> Space by RdnUser77 and Omnibus's Maximum Multiplier! For 6 images with the same model check out the <a href="https://huggingface.co/spaces/Yntec/PrintingPress">Printing Press</a>, for the classic UI with prompt enhancer try <a href="https://huggingface.co/spaces/Yntec/blitz_diffusion">Blitz Diffusion!</a>
</p>
"""
)
demo.queue(default_concurrency_limit=200, max_size=200)
demo.launch(show_api=False, max_threads=400) |