File size: 5,384 Bytes
aac338f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbc9212
 
aac338f
 
 
 
 
 
 
bbc9212
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aac338f
 
bbc9212
 
 
 
 
 
 
 
 
 
aac338f
 
 
 
 
 
 
 
bbc9212
aac338f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbc9212
 
aac338f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import gradio as gr
from random import randint
from all_models import models

from externalmod import gr_Interface_load

import asyncio
import os
from threading import RLock
lock = RLock()
HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None # If private or gated models aren't used, ENV setting is unnecessary.


def load_fn(models):
    global models_load
    models_load = {}
    
    for model in models:
        if model not in models_load.keys():
            try:
                m = gr_Interface_load(f'models/{model}', hf_token=HF_TOKEN)
            except Exception as error:
                print(error)
                m = gr.Interface(lambda: None, ['text'], ['image'])
            models_load.update({model: m})


load_fn(models)


num_models = 6

default_models = models[:num_models]
inference_timeout = 600

MAX_SEED=3999999999

def extend_choices(choices):
    return choices[:num_models] + (num_models - len(choices[:num_models])) * ['NA']


def update_imgbox(choices):
    choices_plus = extend_choices(choices[:num_models])
    return [gr.Image(None, label=m, visible=(m!='NA')) for m in choices_plus]

async def infer(model_str, prompt, seed=1, timeout=inference_timeout):
    from pathlib import Path
    kwargs = {}
    noise = ""
    kwargs["seed"] = seed
    task = asyncio.create_task(asyncio.to_thread(models_load[model_str].fn,
                               prompt=f'{prompt} {noise}', **kwargs, token=HF_TOKEN))
    await asyncio.sleep(0)
    try:
        result = await asyncio.wait_for(task, timeout=timeout)
    except (Exception, asyncio.TimeoutError) as e:
        print(e)
        print(f"Task timed out: {model_str}")
        if not task.done(): task.cancel()
        result = None
    if task.done() and result is not None:
        with lock:
            png_path = "image.png"
            result.save(png_path)
            image = str(Path(png_path).resolve())
        return image
    return None


def gen_fnseed(model_str, prompt, seed=1):
    if model_str == 'NA':
        return None
    try:
        loop = asyncio.new_event_loop()
        result = loop.run_until_complete(infer(model_str, prompt, seed, inference_timeout))
    except (Exception, asyncio.CancelledError) as e:
        print(e)
        print(f"Task aborted: {model_str}")
        result = None
    finally:
        loop.close()
    return result



with gr.Blocks() as demo:
    with gr.Tab('🤗 Huggingface Diffusion 🤗'): 
        txt_input = gr.Textbox(label='Your prompt:', lines=4)
        gen_button = gr.Button('Generate up to 6 images in up to 3 minutes total')
        #stop_button = gr.Button('Stop', variant = 'secondary', interactive = False)
        seed = gr.Slider(label="Use a seed to replicate the same image later", info="Max 3999999999", minimum=0, maximum=MAX_SEED, step=1, value=1)
        gen_button.click(lambda s: gr.update(interactive = True), None)
        gr.HTML(
        """
            <div style="text-align: center; max-width: 1200px; margin: 0 auto;">
              <div>
                <body>
                <div class="center"><p style="margin-bottom: 10px; color: #000000;">Scroll down to see more images and select models.</p>
                </div>
                </body>
              </div>
            </div>
        """
               )
        with gr.Row():
            output = [gr.Image(label = m, min_width=480) for m in default_models]
            current_models = [gr.Textbox(m, visible = False) for m in default_models]
                        
            for m, o in zip(current_models, output):
                gen_event = gr.on(triggers=[gen_button.click, txt_input.submit], fn=gen_fnseed,
                            inputs=[m, txt_input, seed], outputs=[o], concurrency_limit=None, queue=False)
                #stop_button.click(lambda s: gr.update(interactive = False), None, stop_button, cancels = [gen_event])
        with gr.Accordion('Model selection'):
            model_choice = gr.CheckboxGroup(models, label = f'Choose up to {int(num_models)} different models from the {len(models)} available!', value=default_models, interactive=True)
            #model_choice = gr.CheckboxGroup(models, label = f'Choose up to {num_models} different models from the 2 available! Untick them to only use one!', value = default_models, multiselect = True, max_choices = num_models, interactive = True, filterable = False)
            model_choice.change(update_imgbox, model_choice, output)
            model_choice.change(extend_choices, model_choice, current_models)
        with gr.Row():
            gr.HTML(
    """
        <div class="footer">
        <p> Based on the <a href="https://huggingface.co/spaces/John6666/hfd_test_nostopbutton">Huggingface NoStopButton</a> Space by John6666, <a href="https://huggingface.co/spaces/derwahnsinn/TestGen">TestGen</a> Space by derwahnsinn, the <a href="https://huggingface.co/spaces/RdnUser77/SpacIO_v1">SpacIO</a> Space by RdnUser77 and Omnibus's Maximum Multiplier! For 6 images with the same model check out the <a href="https://huggingface.co/spaces/Yntec/PrintingPress">Printing Press</a>, for the classic UI with prompt enhancer try <a href="https://huggingface.co/spaces/Yntec/blitz_diffusion">Blitz Diffusion!</a>
        </p>
    """
)

demo.queue(default_concurrency_limit=200, max_size=200)
demo.launch(show_api=False, max_threads=400)