Spaces:
Running
Running
File size: 8,630 Bytes
e8b84db 4227cb0 e8b84db 4227cb0 e8b84db ecab50a e8b84db 4227cb0 e8b84db 4227cb0 e8b84db 4227cb0 e8b84db 4227cb0 e8b84db 4227cb0 e8b84db 4227cb0 e8b84db 4227cb0 e8b84db 4227cb0 e8b84db 4227cb0 e8b84db 4227cb0 e8b84db 4227cb0 e8b84db 19d58e1 e8b84db 4227cb0 e8b84db 4227cb0 e8b84db 4227cb0 e8b84db 4227cb0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
import gradio as gr
import os
from all_models import models
from externalmod import gr_Interface_load, save_image, randomize_seed
from prompt_extend import extend_prompt
import asyncio
from threading import RLock
lock = RLock()
HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None # If private or gated models aren't used, ENV setting is unnecessary.
inference_timeout = 600
MAX_SEED = 2**32-1
current_model = models[0]
text_gen1 = extend_prompt
models2 = [gr_Interface_load(f"models/{m}", live=False, preprocess=True, postprocess=False, hf_token=HF_TOKEN) for m in models]
def text_it1(inputs, text_gen1=text_gen1):
go_t1 = text_gen1(inputs)
return(go_t1)
def set_model(current_model):
current_model = models[current_model]
return gr.update(label=(f"{current_model}"))
def send_it1(inputs, model_choice, neg_input, height, width, steps, cfg, seed):
output1 = gen_fn(model_choice, inputs, neg_input, height, width, steps, cfg, seed)
return (output1)
# https://huggingface.co/docs/api-inference/detailed_parameters
# https://huggingface.co/docs/huggingface_hub/package_reference/inference_client
async def infer(model_index, prompt, nprompt="", height=0, width=0, steps=0, cfg=0, seed=-1, timeout=inference_timeout):
kwargs = {}
if height > 0: kwargs["height"] = height
if width > 0: kwargs["width"] = width
if steps > 0: kwargs["num_inference_steps"] = steps
if cfg > 0: cfg = kwargs["guidance_scale"] = cfg
if seed == -1: kwargs["seed"] = randomize_seed()
else: kwargs["seed"] = seed
task = asyncio.create_task(asyncio.to_thread(models2[model_index].fn,
prompt=prompt, negative_prompt=nprompt, **kwargs, token=HF_TOKEN))
await asyncio.sleep(0)
try:
result = await asyncio.wait_for(task, timeout=timeout)
except asyncio.TimeoutError as e:
print(e)
print(f"Task timed out: {models[model_index]}")
if not task.done(): task.cancel()
result = None
raise Exception(f"Task timed out: {models[model_index]}") from e
except Exception as e:
print(e)
if not task.done(): task.cancel()
result = None
raise Exception() from e
if task.done() and result is not None and not isinstance(result, tuple):
with lock:
png_path = "image.png"
image = save_image(result, png_path, models[model_index], prompt, nprompt, height, width, steps, cfg, seed)
return image
return None
def gen_fn(model_index, prompt, nprompt="", height=0, width=0, steps=0, cfg=0, seed=-1):
try:
loop = asyncio.new_event_loop()
result = loop.run_until_complete(infer(model_index, prompt, nprompt,
height, width, steps, cfg, seed, inference_timeout))
except (Exception, asyncio.CancelledError) as e:
print(e)
print(f"Task aborted: {models[model_index]}")
result = None
raise gr.Error(f"Task aborted: {models[model_index]}, Error: {e}")
finally:
loop.close()
return result
css="""
.gradio-container {background-image: linear-gradient(#254150, #1e2f40, #182634) !important;
color: #ffaa66 !important; font-family: 'IBM Plex Sans', sans-serif !important;}
h1 {font-size: 6em; color: #ffc99f; margin-top: 30px; margin-bottom: 30px;
text-shadow: 3px 3px 0 rgba(0, 0, 0, 1) !important;}
h3 {color: #ffc99f; !important;}
h4 {display: inline-block; color: #ffffff !important;}
.wrapper img {font-size: 98% !important; white-space: nowrap !important; text-align: center !important;
display: inline-block !important; color: #ffffff !important;}
.wrapper {color: #ffffff !important;}
.gr-box {background-image: linear-gradient(#182634, #1e2f40, #254150) !important;
border-top-color: #000000 !important; border-right-color: #ffffff !important;
border-bottom-color: #ffffff !important; border-left-color: #000000 !important;}
"""
with gr.Blocks(theme='John6666/YntecDark', fill_width=True, css=css) as myface:
gr.HTML(f"""
<div style="text-align: center; max-width: 1200px; margin: 0 auto;">
<div class="center"><h1>Blitz Diffusion</h1></div>
<p style="margin-bottom: 1px; color: #ffaa66;">
<h3>{int(len(models))} Stable Diffusion models, but why? For your enjoyment!</h3></p>
<br><div class="wrapper">10.21 <img src="https://huggingface.co/Yntec/DucHaitenLofi/resolve/main/NEW.webp" alt="NEW!" style="width:32px;height:16px;">This has become a legacy backup copy of old <u><a href="https://huggingface.co/spaces/Yntec/ToyWorld">ToyWorld</a></u>'s UI! Newer models added dailty over there! 10 new models since last update!</div>
<p style="margin-bottom: 1px; font-size: 98%">
<br><h4>If a model is already loaded each new image takes less than <b>10</b> seconds to generate!</h4></p>
<p style="margin-bottom: 1px; color: #ffffff;">
<br><div class="wrapper">Generate 6 images from 1 prompt at the <u><a href="https://huggingface.co/spaces/Yntec/PrintingPress">PrintingPress</a></u>, and use 6 different models at <u><a href="https://huggingface.co/spaces/Yntec/diffusion80xx">Huggingface Diffusion!</a></u>!
</p></p></div>
""", elem_classes="gr-box")
with gr.Row():
with gr.Column(scale=100):
# Model selection dropdown
model_name1 = gr.Dropdown(label="Select Model", choices=[m for m in models], type="index",
value=current_model, interactive=True, elem_classes=["gr-box", "gr-input"])
with gr.Row():
with gr.Column(scale=100):
with gr.Group():
magic1 = gr.Textbox(label="Your Prompt", lines=4, elem_classes=["gr-box", "gr-input"]) #Positive
with gr.Accordion("Advanced", open=False, visible=True):
neg_input = gr.Textbox(label='Negative prompt', lines=1, elem_classes=["gr-box", "gr-input"])
with gr.Row():
width = gr.Slider(label="Width", info="If 0, the default value is used.", maximum=1216, step=32, value=0, elem_classes=["gr-box", "gr-input"])
height = gr.Slider(label="Height", info="If 0, the default value is used.", maximum=1216, step=32, value=0, elem_classes=["gr-box", "gr-input"])
with gr.Row():
steps = gr.Slider(label="Number of inference steps", info="If 0, the default value is used.", maximum=33, step=1, value=0, elem_classes=["gr-box", "gr-input"])
cfg = gr.Slider(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=-1, elem_classes=["gr-box", "gr-input"])
seed = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1, elem_classes=["gr-box", "gr-input"])
seed_rand = gr.Button("Randomize Seed 🎲", size="sm", variant="secondary")
run = gr.Button("Generate Image", variant="primary", elem_classes="gr-button")
with gr.Row():
with gr.Column():
output1 = gr.Image(label=(f"{current_model}"), show_download_button=True,
interactive=False, show_share_button=False, format=".png", elem_classes="gr-box")
with gr.Row():
with gr.Column(scale=50):
input_text=gr.Textbox(label="Use this box to extend an idea automagically, by typing some words and clicking Extend Idea", lines=2, elem_classes=["gr-box", "gr-input"])
see_prompts=gr.Button("Extend Idea -> overwrite the contents of the `Your Prompt´ box above", variant="primary", elem_classes="gr-button")
use_short=gr.Button("Copy the contents of this box to the `Your Prompt´ box above", variant="primary", elem_classes="gr-button")
def short_prompt(inputs):
return (inputs)
model_name1.change(set_model, inputs=model_name1, outputs=[output1])
gr.on(
triggers=[run.click, magic1.submit],
fn=send_it1,
inputs=[magic1, model_name1, neg_input, height, width, steps, cfg, seed],
outputs=[output1],
concurrency_limit=None,
queue=False,
)
use_short.click(short_prompt, inputs=[input_text], outputs=magic1)
see_prompts.click(text_it1, inputs=[input_text], outputs=magic1)
seed_rand.click(randomize_seed, None, [seed], queue=False)
myface.queue(default_concurrency_limit=200, max_size=200)
myface.launch(show_api=False, max_threads=400)
# https://github.com/gradio-app/gradio/issues/6339 |