blitz_diffusion / app.py
Yntec's picture
Update app.py
e8b84db verified
raw
history blame
8.71 kB
import gradio as gr
import os
import sys
from pathlib import Path
from all_models import models
from externalmod import gr_Interface_load
from prompt_extend import extend_prompt
from random import randint
import asyncio
from threading import RLock
lock = RLock()
HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None # If private or gated models aren't used, ENV setting is unnecessary.
inference_timeout = 300
MAX_SEED = 2**32-1
current_model = models[0]
text_gen1 = extend_prompt
models2 = [gr_Interface_load(f"models/{m}", live=False, preprocess=True, postprocess=False, hf_token=HF_TOKEN) for m in models]
def text_it1(inputs, text_gen1=text_gen1):
go_t1 = text_gen1(inputs)
return(go_t1)
def set_model(current_model):
current_model = models[current_model]
return gr.update(label=(f"{current_model}"))
def send_it1(inputs, model_choice, neg_input, height, width, steps, cfg, seed):
output1 = gen_fn(model_choice, inputs, neg_input, height, width, steps, cfg, seed)
return (output1)
# https://huggingface.co/docs/api-inference/detailed_parameters
# https://huggingface.co/docs/huggingface_hub/package_reference/inference_client
async def infer(model_index, prompt, nprompt="", height=None, width=None, steps=None, cfg=None, seed=-1, timeout=inference_timeout):
from pathlib import Path
kwargs = {}
if height is not None and height >= 256: kwargs["height"] = height
if width is not None and width >= 256: kwargs["width"] = width
if steps is not None and steps >= 1: kwargs["num_inference_steps"] = steps
if cfg is not None and cfg > 0: cfg = kwargs["guidance_scale"] = cfg
noise = ""
if seed >= 0: kwargs["seed"] = seed
else:
rand = randint(1, 500)
for i in range(rand):
noise += " "
task = asyncio.create_task(asyncio.to_thread(models2[model_index].fn,
prompt=f'{prompt} {noise}', negative_prompt=nprompt, **kwargs, token=HF_TOKEN))
await asyncio.sleep(0)
try:
result = await asyncio.wait_for(task, timeout=timeout)
except asyncio.TimeoutError as e:
print(e)
print(f"Task timed out: {models2[model_index]}")
if not task.done(): task.cancel()
result = None
raise Exception(f"Task timed out: {models2[model_index]}")
except Exception as e:
print(e)
if not task.done(): task.cancel()
result = None
raise Exception(e)
if task.done() and result is not None and not isinstance(result, tuple):
with lock:
png_path = "image.png"
result.save(png_path)
image = str(Path(png_path).resolve())
return image
return None
def gen_fn(model_index, prompt, nprompt="", height=None, width=None, steps=None, cfg=None, seed=-1):
try:
loop = asyncio.new_event_loop()
result = loop.run_until_complete(infer(model_index, prompt, nprompt,
height, width, steps, cfg, seed, inference_timeout))
except (Exception, asyncio.CancelledError) as e:
print(e)
print(f"Task aborted: {models2[model_index]}")
result = None
raise gr.Error(f"Task aborted: {models2[model_index]}, Error: {e}")
finally:
loop.close()
return result
css="""
.gradio-container {background-image: linear-gradient(#254150, #1e2f40, #182634) !important;
color: #ffaa66 !important; font-family: 'IBM Plex Sans', sans-serif !important;}
h1 {font-size: 6em; color: #ffc99f; margin-top: 30px; margin-bottom: 30px;
text-shadow: 3px 3px 0 rgba(0, 0, 0, 1) !important;}
h3 {color: #ffc99f; !important;}
h4 {display: inline-block; color: #ffffff !important;}
.wrapper img {font-size: 98% !important; white-space: nowrap !important; text-align: center !important;
display: inline-block !important; color: #ffffff !important;}
.wrapper {color: #ffffff !important;}
.gr-box {background-image: linear-gradient(#182634, #1e2f40, #254150) !important;
border-top-color: #000000 !important; border-right-color: #ffffff !important;
border-bottom-color: #ffffff !important; border-left-color: #000000 !important;}
"""
with gr.Blocks(theme='Yntec/YntecDarkTheme', fill_width=True, css=css) as myface:
gr.HTML(f"""
<div style="text-align: center; max-width: 1200px; margin: 0 auto;">
<div class="center"><h1>Blitz Diffusion</h1></div>
<p style="margin-bottom: 1px; color: #ffaa66;">
<h3>{int(len(models))} Stable Diffusion models, but why? For your enjoyment!</h3></p>
<br><div class="wrapper">9.3 <img src="https://huggingface.co/Yntec/DucHaitenLofi/resolve/main/NEW.webp" alt="NEW!" style="width:32px;height:16px;">This has become a legacy backup copy of old <u><a href="https://huggingface.co/spaces/Yntec/ToyWorld">ToyWorld</a></u>'s UI! Newer models added dailty over there! 25 new models since last update!</div>
<p style="margin-bottom: 1px; font-size: 98%">
<br><h4>If a model is already loaded each new image takes less than <b>10</b> seconds to generate!</h4></p>
<p style="margin-bottom: 1px; color: #ffffff;">
<br><div class="wrapper">Generate 6 images from 1 prompt at the <u><a href="https://huggingface.co/spaces/Yntec/PrintingPress">PrintingPress</a></u>, and use 6 different models at <u><a href="https://huggingface.co/spaces/Yntec/diffusion80xx">Huggingface Diffusion!</a></u>!
</p></p></div>
""", elem_classes="gr-box")
with gr.Row():
with gr.Column(scale=100):
# Model selection dropdown
model_name1 = gr.Dropdown(label="Select Model", choices=[m for m in models], type="index",
value=current_model, interactive=True, elem_classes=["gr-box", "gr-input"])
with gr.Row():
with gr.Column(scale=100):
with gr.Group():
magic1 = gr.Textbox(label="Your Prompt", lines=4, elem_classes=["gr-box", "gr-input"]) #Positive
with gr.Accordion("Advanced", open=False, visible=True):
neg_input = gr.Textbox(label='Negative prompt', lines=1, elem_classes=["gr-box", "gr-input"])
with gr.Row():
width = gr.Slider(label="Width", info="If 0, the default value is used.", maximum=1216, step=32, value=0, elem_classes=["gr-box", "gr-input"])
height = gr.Slider(label="Height", info="If 0, the default value is used.", maximum=1216, step=32, value=0, elem_classes=["gr-box", "gr-input"])
with gr.Row():
steps = gr.Slider(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0, elem_classes=["gr-box", "gr-input"])
cfg = gr.Slider(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0, elem_classes=["gr-box", "gr-input"])
seed = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1, elem_classes=["gr-box", "gr-input"])
run = gr.Button("Generate Image", variant="primary", elem_classes="gr-button")
with gr.Row():
with gr.Column():
output1 = gr.Image(label=(f"{current_model}"), show_download_button=True,
interactive=False, show_share_button=False, format=".png", elem_classes="gr-box")
with gr.Row():
with gr.Column(scale=50):
input_text=gr.Textbox(label="Use this box to extend an idea automagically, by typing some words and clicking Extend Idea", lines=2, elem_classes=["gr-box", "gr-input"])
see_prompts=gr.Button("Extend Idea -> overwrite the contents of the `Your Prompt´ box above", variant="primary", elem_classes="gr-button")
use_short=gr.Button("Copy the contents of this box to the `Your Prompt´ box above", variant="primary", elem_classes="gr-button")
def short_prompt(inputs):
return (inputs)
model_name1.change(set_model, inputs=model_name1, outputs=[output1])
gr.on(
triggers=[run.click, magic1.submit],
fn=send_it1,
inputs=[magic1, model_name1, neg_input, height, width, steps, cfg, seed],
outputs=[output1],
concurrency_limit=None,
queue=False,
)
use_short.click(short_prompt, inputs=[input_text], outputs=magic1, queue=False)
see_prompts.click(text_it1, inputs=[input_text], outputs=magic1, queue=False)
myface.queue(default_concurrency_limit=200, max_size=200)
myface.launch(show_api=False, max_threads=400)
# https://github.com/gradio-app/gradio/issues/6339