import time from pymongo import MongoClient import pandas as pd import math import os # MongoDB连接配置 client = MongoClient(os.getenv("client_link")) db = client.get_database('roleplay') collection = db.get_collection('model_stats') def update_model_stats(model1_name, model2_name, winner, turn, anony, language): # 获取当前时间戳 tstamp = time.time() # 插入数据到MongoDB collection.insert_one({ "Model 1": model1_name, "Model 2": model2_name, "Winner": winner, "Turn": turn, "Anony": anony, "Language": language, "tstamp": tstamp }) def calculate_elo(winner_elo, loser_elo, k=28, outcome=1): """ winner_elo: Elo score of the winner before the game loser_elo: Elo score of the loser before the game k: K-factor in Elo calculation outcome: 1 if winner won, 0.5 if tie, 0 if loser won (inverted) """ expected_win = 1 / (1 + math.pow(10, (loser_elo - winner_elo) / 400)) new_winner_elo = winner_elo + k * (outcome - expected_win) return new_winner_elo def load_dataframe(): # 从MongoDB读取数据 cursor = collection.find({}) # 将游标中的数据转换为DataFrame data = pd.DataFrame(list(cursor)) # 创建模型名称的唯一列表 models = pd.unique(data[['Model 1', 'Model 2']].values.ravel('K')) # 初始化结果字典 results = {'模型名称': [], '参赛次数': [], '胜利次数': [], 'ELO': []} elo_dict = {model: 1000 for model in models} # 初始化ELO分数为1000 for _, row in data.iterrows(): model1 = row['Model 1'] model2 = row['Model 2'] winner = row['Winner'] if winner == 'Model 1': elo_dict[model1] = calculate_elo(elo_dict[model1], elo_dict[model2], outcome=1) elo_dict[model2] = calculate_elo(elo_dict[model2], elo_dict[model1], outcome=0) elif winner == 'Model 2': elo_dict[model2] = calculate_elo(elo_dict[model2], elo_dict[model1], outcome=1) elo_dict[model1] = calculate_elo(elo_dict[model1], elo_dict[model2], outcome=0) elif winner == 'tie': elo_dict[model1] = calculate_elo(elo_dict[model1], elo_dict[model2], outcome=0.8) elo_dict[model2] = calculate_elo(elo_dict[model2], elo_dict[model1], outcome=0.8) elif winner == 'bothbad': elo_dict[model1] = calculate_elo(elo_dict[model1], elo_dict[model2], outcome=0.05) elo_dict[model2] = calculate_elo(elo_dict[model2], elo_dict[model1], outcome=0.05) for model in models: count = data['Model 1'].value_counts().get(model, 0) + data['Model 2'].value_counts().get(model, 0) if count > 5: # Only include models with more than 5 participations win_count = 0 win_count += len(data[(data['Winner'] == 'Model 1') & (data['Model 1'] == model)]) win_count += len(data[(data['Winner'] == 'Model 2') & (data['Model 2'] == model)]) win_count += len(data[(data['Winner'] == 'tie') & ((data['Model 1'] == model) | (data['Model 2'] == model))]) results['模型名称'].append(model) results['参赛次数'].append(count) results['胜利次数'].append(win_count) results['ELO'].append(round(elo_dict[model])) # 将结果字典转换为DataFrame result_df = pd.DataFrame(results) # 计算胜率并排序 result_df["模型胜率"] = (result_df['胜利次数'] / result_df['参赛次数']) * 100 result_df = result_df.sort_values(by="模型胜率", ascending=False) result_df["模型胜率"] = result_df["模型胜率"].map("{:.2f}%".format) return result_df def change_name(old,new): collection.update_many( { "Model 1": old }, { "$set": { "Model 1": new } } ) # 更新 Model 2 字段 collection.update_many( { "Model 2": old }, { "$set": { "Model 2": new } } )