File size: 27,147 Bytes
7dbe662
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
import torch
import numpy as np
import torch.nn as nn
from timm.models.layers import DropPath, LayerNorm2d
def window_partition(x, window_size):
    B, C, H, W = x.shape
    x = x.view(B, C, H // window_size, window_size, W // window_size, window_size)
    windows = x.permute(0, 2, 4, 3, 5, 1).reshape(-1, window_size*window_size, C)
    return windows


def window_reverse(windows, window_size, H, W, B):
    x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
    x = x.permute(0, 5, 1, 3, 2, 4).reshape(B, windows.shape[2], H, W)
    return x


def ct_dewindow(ct, W, H, window_size):
    bs = ct.shape[0]
    N=ct.shape[2]
    ct2 = ct.view(-1, W//window_size, H//window_size, window_size, window_size, N).permute(0, 5, 1, 3, 2, 4)
    ct2 = ct2.reshape(bs, N, W*H).transpose(1, 2)
    return ct2


def ct_window(ct, W, H, window_size):
    bs = ct.shape[0]
    N = ct.shape[2]
    ct = ct.view(bs, H // window_size, window_size, W // window_size, window_size, N)
    ct = ct.permute(0, 1, 3, 2, 4, 5)
    return ct

class PosEmbMLPSwinv2D(nn.Module):
    def __init__(self,
                 window_size,
                 pretrained_window_size,
                 num_heads, seq_length,
                 ct_correct=False,
                 no_log=False):
        super().__init__()
        self.window_size = window_size
        self.num_heads = num_heads
        self.cpb_mlp = nn.Sequential(nn.Linear(2, 512, bias=True),
                                     nn.ReLU(inplace=True),
                                     nn.Linear(512, num_heads, bias=False))
        relative_coords_h = torch.arange(-(self.window_size[0] - 1), self.window_size[0], dtype=torch.float32)
        relative_coords_w = torch.arange(-(self.window_size[1] - 1), self.window_size[1], dtype=torch.float32)
        relative_coords_table = torch.stack(
            torch.meshgrid([relative_coords_h,
                            relative_coords_w])).permute(1, 2, 0).contiguous().unsqueeze(0)  # 1, 2*Wh-1, 2*Ww-1, 2
        if pretrained_window_size[0] > 0:
            relative_coords_table[:, :, :, 0] /= (pretrained_window_size[0] - 1)
            relative_coords_table[:, :, :, 1] /= (pretrained_window_size[1] - 1)
        else:
            relative_coords_table[:, :, :, 0] /= (self.window_size[0] - 1)
            relative_coords_table[:, :, :, 1] /= (self.window_size[1] - 1)

        if not no_log:
            relative_coords_table *= 8  # normalize to -8, 8
            relative_coords_table = torch.sign(relative_coords_table) * torch.log2(
                torch.abs(relative_coords_table) + 1.0) / np.log2(8)

        self.register_buffer("relative_coords_table", relative_coords_table)
        coords_h = torch.arange(self.window_size[0])
        coords_w = torch.arange(self.window_size[1])
        coords = torch.stack(torch.meshgrid([coords_h, coords_w]))
        coords_flatten = torch.flatten(coords, 1)
        relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]
        relative_coords = relative_coords.permute(1, 2, 0).contiguous()
        relative_coords[:, :, 0] += self.window_size[0] - 1
        relative_coords[:, :, 1] += self.window_size[1] - 1
        relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
        relative_position_index = relative_coords.sum(-1)
        self.register_buffer("relative_position_index", relative_position_index)
        self.grid_exists = False
        self.pos_emb = None
        self.deploy = False
        relative_bias = torch.zeros(1, num_heads, seq_length, seq_length)
        self.seq_length = seq_length
        self.register_buffer("relative_bias", relative_bias)
        self.ct_correct=ct_correct

    def switch_to_deploy(self):
        self.deploy = True

    def forward(self, input_tensor, local_window_size):
        if self.deploy:
            input_tensor += self.relative_bias
            return input_tensor
        else:
            self.grid_exists = False

        if not self.grid_exists:
            self.grid_exists = True

            relative_position_bias_table = self.cpb_mlp(self.relative_coords_table).view(-1, self.num_heads)
            relative_position_bias = relative_position_bias_table[self.relative_position_index.view(-1)].view(
                self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1],
                -1)
            relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()
            relative_position_bias = 16 * torch.sigmoid(relative_position_bias)
            n_global_feature = input_tensor.shape[2] - local_window_size
            if n_global_feature > 0 and self.ct_correct:

                step_for_ct=self.window_size[0]/(n_global_feature**0.5+1)
                seq_length = int(n_global_feature ** 0.5)
                indices = []
                for i in range(seq_length):
                    for j in range(seq_length):
                        ind = (i+1)*step_for_ct*self.window_size[0] + (j+1)*step_for_ct
                        indices.append(int(ind))

                top_part = relative_position_bias[:, indices, :]
                lefttop_part = relative_position_bias[:, indices, :][:, :, indices]
                left_part = relative_position_bias[:, :, indices]
            relative_position_bias = torch.nn.functional.pad(relative_position_bias, (n_global_feature,
                                                                                      0,
                                                                                      n_global_feature,
                                                                                      0)).contiguous()
            if n_global_feature>0 and self.ct_correct:
                relative_position_bias = relative_position_bias*0.0
                relative_position_bias[:, :n_global_feature, :n_global_feature] = lefttop_part
                relative_position_bias[:, :n_global_feature, n_global_feature:] = top_part
                relative_position_bias[:, n_global_feature:, :n_global_feature] = left_part

            self.pos_emb = relative_position_bias.unsqueeze(0)
            self.relative_bias = self.pos_emb

        input_tensor += self.pos_emb
        return input_tensor


class PosEmbMLPSwinv1D(nn.Module):
    def __init__(self,
                 dim,
                 rank=2,
                 seq_length=4,
                 conv=False):
        super().__init__()
        self.rank = rank
        if not conv:
            self.cpb_mlp = nn.Sequential(nn.Linear(self.rank, 512, bias=True),
                                         nn.ReLU(),
                                         nn.Linear(512, dim, bias=False))
        else:
            self.cpb_mlp = nn.Sequential(nn.Conv1d(self.rank, 512, 1,bias=True),
                                         nn.ReLU(),
                                         nn.Conv1d(512, dim, 1,bias=False))
        self.grid_exists = False
        self.pos_emb = None
        self.deploy = False
        relative_bias = torch.zeros(1,seq_length, dim)
        self.register_buffer("relative_bias", relative_bias)
        self.conv = conv

    def switch_to_deploy(self):
        self.deploy = True

    def forward(self, input_tensor):
        seq_length = input_tensor.shape[1] if not self.conv else input_tensor.shape[2]
        if self.deploy:
            return input_tensor + self.relative_bias
        else:
            self.grid_exists = False
        if not self.grid_exists:
            self.grid_exists = True
            if self.rank == 1:
                relative_coords_h = torch.arange(0, seq_length, device=input_tensor.device, dtype = input_tensor.dtype)
                relative_coords_h -= seq_length//2
                relative_coords_h /= (seq_length//2)
                relative_coords_table = relative_coords_h
                self.pos_emb = self.cpb_mlp(relative_coords_table.unsqueeze(0).unsqueeze(2))
                self.relative_bias = self.pos_emb
            else:
                seq_length = int(seq_length**0.5)
                relative_coords_h = torch.arange(0, seq_length, device=input_tensor.device, dtype = input_tensor.dtype)
                relative_coords_w = torch.arange(0, seq_length, device=input_tensor.device, dtype = input_tensor.dtype)
                relative_coords_table = torch.stack(torch.meshgrid([relative_coords_h, relative_coords_w])).contiguous().unsqueeze(0)
                relative_coords_table -= seq_length // 2
                relative_coords_table /= (seq_length // 2)
                if not self.conv:
                    self.pos_emb = self.cpb_mlp(relative_coords_table.flatten(2).transpose(1,2))
                else:
                    self.pos_emb = self.cpb_mlp(relative_coords_table.flatten(2))
                self.relative_bias = self.pos_emb
        input_tensor = input_tensor + self.pos_emb
        return input_tensor


class Mlp(nn.Module):
    """
    Multi-Layer Perceptron (MLP) block
    """

    def __init__(self,
                 in_features,
                 hidden_features=None,
                 out_features=None,
                 act_layer=nn.GELU,
                 drop=0.):
        """
        Args:
            in_features: input features dimension.
            hidden_features: hidden features dimension.
            out_features: output features dimension.
            act_layer: activation function.
            drop: dropout rate.
        """

        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x_size = x.size()
        x = x.view(-1, x_size[-1])
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        x = x.view(x_size)
        return x

class Downsample(nn.Module):
    """
    Down-sampling block based on: "Hatamizadeh et al.,
    FasterViT: Fast Vision Transformers with Hierarchical Attention
    """

    def __init__(self,
                 dim,
                 out_dim,
                 keep_dim=False,
                 stride=2,
                 ):
        """
        Args:
            dim: feature size dimension.
            norm_layer: normalization layer.
            keep_dim: bool argument for maintaining the resolution.
        """

        super().__init__()
        if keep_dim:
            out_dim = dim
        self.norm = LayerNorm2d(dim)
        self.reduction = nn.Sequential(
            nn.Conv2d(dim, out_dim, 3, stride, 1, bias=False),
        )

    def forward(self, x):
        x = self.norm(x)
        x = self.reduction(x)
        return x
class PatchEmbed(nn.Module):
    """
    Patch embedding block based on: "Hatamizadeh et al.,
    FasterViT: Fast Vision Transformers with Hierarchical Attention
    """

    def __init__(self, in_chans=3, in_dim=64, dim=96):
        """
        Args:
            in_chans: number of input channels.
            dim: feature size dimension.
        """
        super().__init__()
        self.proj = nn.Identity()
        self.conv_down = nn.Sequential(
            nn.Conv2d(in_chans, in_dim, 3, 2, 1, bias=False),
            nn.BatchNorm2d(in_dim, eps=1e-4),
            nn.ReLU(),
            nn.Conv2d(in_dim, dim, 3, 2, 1, bias=False),
            nn.BatchNorm2d(dim, eps=1e-4),
            nn.ReLU()
            )

    def forward(self, x):
        x = self.proj(x)
        x = self.conv_down(x)
        return x


class ConvBlock(nn.Module):
    """
    Conv block based on: "Hatamizadeh et al.,
    FasterViT: Fast Vision Transformers with Hierarchical Attention
    """

    def __init__(self, dim,
                 drop_path=0.,
                 layer_scale=None,
                 kernel_size=3):
        super().__init__()
        """
        Args:
            drop_path: drop path.
            layer_scale: layer scale coefficient.
            kernel_size: kernel size.
        """
        self.conv1 = nn.Conv2d(dim, dim, kernel_size=kernel_size, stride=1, padding=1)
        self.norm1 = nn.BatchNorm2d(dim, eps=1e-5)
        self.act1 = nn.GELU()
        self.conv2 = nn.Conv2d(dim, dim, kernel_size=kernel_size, stride=1, padding=1)
        self.norm2 = nn.BatchNorm2d(dim, eps=1e-5)
        self.layer_scale = layer_scale
        if layer_scale is not None and type(layer_scale) in [int, float]:
            self.gamma = nn.Parameter(layer_scale * torch.ones(dim))
            self.layer_scale = True
        else:
            self.layer_scale = False
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()

    def forward(self, x, global_feature=None):
        input = x
        x = self.conv1(x)
        x = self.norm1(x)
        x = self.act1(x)
        x = self.conv2(x)
        x = self.norm2(x)
        if self.layer_scale:
            x = x * self.gamma.view(1, -1, 1, 1)
        x = input + self.drop_path(x)
        return x, global_feature


class WindowAttention(nn.Module):
    """
    Window attention based on: "Hatamizadeh et al.,
    FasterViT: Fast Vision Transformers with Hierarchical Attention
    """
    def __init__(self,
                 dim,
                 num_heads=8,
                 qkv_bias=False,
                 qk_scale=None,
                 attn_drop=0.,
                 proj_drop=0.,
                 resolution=0,
                 seq_length=0):
        super().__init__()
        """
        Args:
            dim: feature size dimension.
            num_heads: number of attention head.
            qkv_bias: bool argument for query, key, value learnable bias.
            qk_scale: bool argument to scaling query, key.
            attn_drop: attention dropout rate.
            proj_drop: output dropout rate.
            resolution: feature resolution.
            seq_length: sequence length.
        """
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.head_dim = dim // num_heads
        self.scale = qk_scale or head_dim ** -0.5
        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)
        # attention positional bias
        self.pos_emb_funct = PosEmbMLPSwinv2D(window_size=[resolution, resolution],
                                              pretrained_window_size=[resolution, resolution],
                                              num_heads=num_heads,
                                              seq_length=seq_length)

        self.resolution = resolution

    def forward(self, x):
        B, N, C = x.shape
        qkv = self.qkv(x).reshape(B, -1, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        q, k, v = qkv[0], qkv[1], qkv[2]
        attn = (q @ k.transpose(-2, -1)) * self.scale
        attn = self.pos_emb_funct(attn, self.resolution ** 2)
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)
        x = (attn @ v).transpose(1, 2).reshape(B, -1, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class HAT(nn.Module):
    """
    Hierarchical attention (HAT) based on: "Hatamizadeh et al.,
    FasterViT: Fast Vision Transformers with Hierarchical Attention
    """
    def __init__(self,
                 dim,
                 num_heads,
                 mlp_ratio=4.,
                 qkv_bias=False,
                 qk_scale=None,
                 drop=0.,
                 attn_drop=0.,
                 drop_path=0.,
                 act_layer=nn.GELU,
                 norm_layer=nn.LayerNorm,
                 sr_ratio=1.,
                 window_size=7,
                 last=False,
                 layer_scale=None,
                 ct_size=1,
                 do_propagation=False):
        super().__init__()
        """
        Args:
            dim: feature size dimension.
            num_heads: number of attention head.
            mlp_ratio: MLP ratio.
            qkv_bias: bool argument for query, key, value learnable bias.
            qk_scale: bool argument to scaling query, key.
            drop: dropout rate.
            attn_drop: attention dropout rate.
            proj_drop: output dropout rate.
            act_layer: activation function.
            norm_layer: normalization layer.
            sr_ratio: input to window size ratio.
            window_size: window size.
            last: last layer flag.
            layer_scale: layer scale coefficient.
            ct_size: spatial dimension of carrier token local window.
            do_propagation: enable carrier token propagation.
        """
        # positional encoding for windowed attention tokens
        self.pos_embed = PosEmbMLPSwinv1D(dim, rank=2, seq_length=window_size**2)
        self.norm1 = norm_layer(dim)
        # number of carrier tokens per every window
        cr_tokens_per_window = ct_size**2 if sr_ratio > 1 else 0
        # total number of carrier tokens
        cr_tokens_total = cr_tokens_per_window*sr_ratio*sr_ratio
        self.cr_window = ct_size
        self.attn = WindowAttention(dim,
                                    num_heads=num_heads,
                                    qkv_bias=qkv_bias,
                                    qk_scale=qk_scale,
                                    attn_drop=attn_drop,
                                    proj_drop=drop,
                                    resolution=window_size,
                                    seq_length=window_size**2 + cr_tokens_per_window)

        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
        self.window_size = window_size

        use_layer_scale = layer_scale is not None and type(layer_scale) in [int, float]
        self.gamma3 = nn.Parameter(layer_scale * torch.ones(dim))  if use_layer_scale else 1
        self.gamma4 = nn.Parameter(layer_scale * torch.ones(dim))  if use_layer_scale else 1

        self.sr_ratio = sr_ratio
        if sr_ratio > 1:
            # if do hierarchical attention, this part is for carrier tokens
            self.hat_norm1 = norm_layer(dim)
            self.hat_norm2 = norm_layer(dim)
            self.hat_attn = WindowAttention(
                dim,
                num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
                attn_drop=attn_drop, proj_drop=drop, resolution=int(cr_tokens_total**0.5),
                seq_length=cr_tokens_total)

            self.hat_mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
            self.hat_drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
            self.hat_pos_embed = PosEmbMLPSwinv1D(dim, rank=2, seq_length=cr_tokens_total)
            self.gamma1 = nn.Parameter(layer_scale * torch.ones(dim)) if use_layer_scale else 1
            self.gamma2 = nn.Parameter(layer_scale * torch.ones(dim)) if use_layer_scale else 1
            self.upsampler = nn.Upsample(size=window_size, mode='nearest')

        # keep track for the last block to explicitly add carrier tokens to feature maps
        self.last = last
        self.do_propagation = do_propagation

    def forward(self, x, carrier_tokens):
        B, T, N = x.shape
        ct = carrier_tokens
        x = self.pos_embed(x)

        if self.sr_ratio > 1:
            # do hierarchical attention via carrier tokens
            # first do attention for carrier tokens
            Bg, Ng, Hg = ct.shape

            # ct are located quite differently
            ct = ct_dewindow(ct, self.cr_window*self.sr_ratio, self.cr_window*self.sr_ratio, self.cr_window)

            # positional bias for carrier tokens
            ct = self.hat_pos_embed(ct)

            # attention plus mlp
            ct = ct + self.hat_drop_path(self.gamma1*self.hat_attn(self.hat_norm1(ct)))
            ct = ct + self.hat_drop_path(self.gamma2*self.hat_mlp(self.hat_norm2(ct)))

            # ct are put back to windows
            ct = ct_window(ct, self.cr_window * self.sr_ratio, self.cr_window * self.sr_ratio, self.cr_window)

            ct = ct.reshape(x.shape[0], -1, N)
            # concatenate carrier_tokens to the windowed tokens
            x = torch.cat((ct, x), dim=1)

        # window attention together with carrier tokens
        x = x + self.drop_path(self.gamma3*self.attn(self.norm1(x)))
        x = x + self.drop_path(self.gamma4*self.mlp(self.norm2(x)))

        if self.sr_ratio > 1:
            # for hierarchical attention we need to split carrier tokens and window tokens back
            ctr, x = x.split([x.shape[1] - self.window_size*self.window_size, self.window_size*self.window_size], dim=1)
            ct = ctr.reshape(Bg, Ng, Hg) # reshape carrier tokens.
            if self.last and self.do_propagation:
                # propagate carrier token information into the image
                ctr_image_space = ctr.transpose(1, 2).reshape(B, N, self.cr_window, self.cr_window)
                x = x + self.gamma1 * self.upsampler(ctr_image_space.to(dtype=torch.float32)).flatten(2).transpose(1, 2).to(dtype=x.dtype)
        return x, ct


class TokenInitializer(nn.Module):
    """
    Carrier token Initializer based on: "Hatamizadeh et al.,
    FasterViT: Fast Vision Transformers with Hierarchical Attention
    """
    def __init__(self,
                 dim,
                 input_resolution,
                 window_size,
                 ct_size=1):
        """
        Args:
            dim: feature size dimension.
            input_resolution: input image resolution.
            window_size: window size.
            ct_size: spatial dimension of carrier token local window
        """
        super().__init__()

        output_size = int(ct_size * input_resolution/window_size)
        stride_size = int(input_resolution/output_size)
        kernel_size = input_resolution - (output_size - 1) * stride_size
        self.pos_embed = nn.Conv2d(dim, dim, 3, padding=1, groups=dim)
        to_global_feature = nn.Sequential()
        to_global_feature.add_module("pos", self.pos_embed)
        to_global_feature.add_module("pool", nn.AvgPool2d(kernel_size=kernel_size, stride=stride_size))
        self.to_global_feature = to_global_feature
        self.window_size = ct_size

    def forward(self, x):
        x = self.to_global_feature(x)
        B, C, H, W = x.shape
        ct = x.view(B, C, H // self.window_size, self.window_size, W // self.window_size, self.window_size)
        ct = ct.permute(0, 2, 4, 3, 5, 1).reshape(-1, H*W, C)
        return ct
class FasterViTLayer(nn.Module):
    """
    GCViT layer based on: "Hatamizadeh et al.,
    Global Context Vision Transformers <https://arxiv.org/abs/2206.09959>"
    """

    def __init__(self,
                 dim,
                 out_dim,
                 depth,
                 input_resolution,
                 num_heads,
                 window_size,
                 ct_size=1,
                 conv=False,
                 downsample=True,
                 mlp_ratio=4.,
                 qkv_bias=True,
                 qk_scale=None,
                 drop=0.,
                 attn_drop=0.,
                 drop_path=0.,
                 layer_scale=None,
                 layer_scale_conv=None,
                 only_local=False,
                 hierarchy=True,
                 do_propagation=False
                 ):
        """
        Args:
            dim: feature size dimension.
            depth: layer depth.
            input_resolution: input resolution.
            num_heads: number of attention head.
            window_size: window size.
            ct_size: spatial dimension of carrier token local window.
            conv: conv_based stage flag.
            downsample: downsample flag.
            mlp_ratio: MLP ratio.
            qkv_bias: bool argument for query, key, value learnable bias.
            qk_scale: bool argument to scaling query, key.
            drop: dropout rate.
            attn_drop: attention dropout rate.
            drop_path: drop path rate.
            layer_scale: layer scale coefficient.
            layer_scale_conv: conv layer scale coefficient.
            only_local: local attention flag.
            hierarchy: hierarchical attention flag.
            do_propagation: enable carrier token propagation.
        """
        super().__init__()
        self.conv = conv
        self.transformer_block = False
        if conv:
            self.blocks = nn.ModuleList([
                ConvBlock(dim=dim,
                          drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
                          layer_scale=layer_scale_conv)
                for i in range(depth)])
            self.transformer_block = False
        else:
            sr_ratio = input_resolution // window_size if not only_local else 1
            self.blocks = nn.ModuleList([
                HAT(dim=dim,
                    num_heads=num_heads,
                    mlp_ratio=mlp_ratio,
                    qkv_bias=qkv_bias,
                    qk_scale=qk_scale,
                    drop=drop,
                    attn_drop=attn_drop,
                    drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
                    sr_ratio=sr_ratio,
                    window_size=window_size,
                    last=(i == depth-1),
                    layer_scale=layer_scale,
                    ct_size=ct_size,
                    do_propagation=do_propagation,
                    )
                for i in range(depth)])
            self.transformer_block = True
        self.downsample = Downsample(dim=dim, out_dim=out_dim, stride=1) if not downsample else Downsample(dim=dim, out_dim=out_dim, stride=2)
        if len(self.blocks) and not only_local and input_resolution // window_size > 1 and hierarchy and not self.conv:
            self.global_tokenizer = TokenInitializer(dim,
                                                     input_resolution,
                                                     window_size,
                                                     ct_size=ct_size)
            self.do_gt = True
        else:
            self.do_gt = False

        self.window_size = window_size

    def forward(self, x):
        ct = self.global_tokenizer(x) if self.do_gt else None
        B, C, H, W = x.shape
        if self.transformer_block:
            x = window_partition(x, self.window_size)
        for bn, blk in enumerate(self.blocks):
            x, ct = blk(x, ct)
        if self.transformer_block:
            x = window_reverse(x, self.window_size, H, W, B)
        if self.downsample is None:
            return x
        return self.downsample(x)