Spaces:
Running
Running
File size: 27,147 Bytes
7dbe662 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 |
import torch
import numpy as np
import torch.nn as nn
from timm.models.layers import DropPath, LayerNorm2d
def window_partition(x, window_size):
B, C, H, W = x.shape
x = x.view(B, C, H // window_size, window_size, W // window_size, window_size)
windows = x.permute(0, 2, 4, 3, 5, 1).reshape(-1, window_size*window_size, C)
return windows
def window_reverse(windows, window_size, H, W, B):
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
x = x.permute(0, 5, 1, 3, 2, 4).reshape(B, windows.shape[2], H, W)
return x
def ct_dewindow(ct, W, H, window_size):
bs = ct.shape[0]
N=ct.shape[2]
ct2 = ct.view(-1, W//window_size, H//window_size, window_size, window_size, N).permute(0, 5, 1, 3, 2, 4)
ct2 = ct2.reshape(bs, N, W*H).transpose(1, 2)
return ct2
def ct_window(ct, W, H, window_size):
bs = ct.shape[0]
N = ct.shape[2]
ct = ct.view(bs, H // window_size, window_size, W // window_size, window_size, N)
ct = ct.permute(0, 1, 3, 2, 4, 5)
return ct
class PosEmbMLPSwinv2D(nn.Module):
def __init__(self,
window_size,
pretrained_window_size,
num_heads, seq_length,
ct_correct=False,
no_log=False):
super().__init__()
self.window_size = window_size
self.num_heads = num_heads
self.cpb_mlp = nn.Sequential(nn.Linear(2, 512, bias=True),
nn.ReLU(inplace=True),
nn.Linear(512, num_heads, bias=False))
relative_coords_h = torch.arange(-(self.window_size[0] - 1), self.window_size[0], dtype=torch.float32)
relative_coords_w = torch.arange(-(self.window_size[1] - 1), self.window_size[1], dtype=torch.float32)
relative_coords_table = torch.stack(
torch.meshgrid([relative_coords_h,
relative_coords_w])).permute(1, 2, 0).contiguous().unsqueeze(0) # 1, 2*Wh-1, 2*Ww-1, 2
if pretrained_window_size[0] > 0:
relative_coords_table[:, :, :, 0] /= (pretrained_window_size[0] - 1)
relative_coords_table[:, :, :, 1] /= (pretrained_window_size[1] - 1)
else:
relative_coords_table[:, :, :, 0] /= (self.window_size[0] - 1)
relative_coords_table[:, :, :, 1] /= (self.window_size[1] - 1)
if not no_log:
relative_coords_table *= 8 # normalize to -8, 8
relative_coords_table = torch.sign(relative_coords_table) * torch.log2(
torch.abs(relative_coords_table) + 1.0) / np.log2(8)
self.register_buffer("relative_coords_table", relative_coords_table)
coords_h = torch.arange(self.window_size[0])
coords_w = torch.arange(self.window_size[1])
coords = torch.stack(torch.meshgrid([coords_h, coords_w]))
coords_flatten = torch.flatten(coords, 1)
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]
relative_coords = relative_coords.permute(1, 2, 0).contiguous()
relative_coords[:, :, 0] += self.window_size[0] - 1
relative_coords[:, :, 1] += self.window_size[1] - 1
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
relative_position_index = relative_coords.sum(-1)
self.register_buffer("relative_position_index", relative_position_index)
self.grid_exists = False
self.pos_emb = None
self.deploy = False
relative_bias = torch.zeros(1, num_heads, seq_length, seq_length)
self.seq_length = seq_length
self.register_buffer("relative_bias", relative_bias)
self.ct_correct=ct_correct
def switch_to_deploy(self):
self.deploy = True
def forward(self, input_tensor, local_window_size):
if self.deploy:
input_tensor += self.relative_bias
return input_tensor
else:
self.grid_exists = False
if not self.grid_exists:
self.grid_exists = True
relative_position_bias_table = self.cpb_mlp(self.relative_coords_table).view(-1, self.num_heads)
relative_position_bias = relative_position_bias_table[self.relative_position_index.view(-1)].view(
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1],
-1)
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()
relative_position_bias = 16 * torch.sigmoid(relative_position_bias)
n_global_feature = input_tensor.shape[2] - local_window_size
if n_global_feature > 0 and self.ct_correct:
step_for_ct=self.window_size[0]/(n_global_feature**0.5+1)
seq_length = int(n_global_feature ** 0.5)
indices = []
for i in range(seq_length):
for j in range(seq_length):
ind = (i+1)*step_for_ct*self.window_size[0] + (j+1)*step_for_ct
indices.append(int(ind))
top_part = relative_position_bias[:, indices, :]
lefttop_part = relative_position_bias[:, indices, :][:, :, indices]
left_part = relative_position_bias[:, :, indices]
relative_position_bias = torch.nn.functional.pad(relative_position_bias, (n_global_feature,
0,
n_global_feature,
0)).contiguous()
if n_global_feature>0 and self.ct_correct:
relative_position_bias = relative_position_bias*0.0
relative_position_bias[:, :n_global_feature, :n_global_feature] = lefttop_part
relative_position_bias[:, :n_global_feature, n_global_feature:] = top_part
relative_position_bias[:, n_global_feature:, :n_global_feature] = left_part
self.pos_emb = relative_position_bias.unsqueeze(0)
self.relative_bias = self.pos_emb
input_tensor += self.pos_emb
return input_tensor
class PosEmbMLPSwinv1D(nn.Module):
def __init__(self,
dim,
rank=2,
seq_length=4,
conv=False):
super().__init__()
self.rank = rank
if not conv:
self.cpb_mlp = nn.Sequential(nn.Linear(self.rank, 512, bias=True),
nn.ReLU(),
nn.Linear(512, dim, bias=False))
else:
self.cpb_mlp = nn.Sequential(nn.Conv1d(self.rank, 512, 1,bias=True),
nn.ReLU(),
nn.Conv1d(512, dim, 1,bias=False))
self.grid_exists = False
self.pos_emb = None
self.deploy = False
relative_bias = torch.zeros(1,seq_length, dim)
self.register_buffer("relative_bias", relative_bias)
self.conv = conv
def switch_to_deploy(self):
self.deploy = True
def forward(self, input_tensor):
seq_length = input_tensor.shape[1] if not self.conv else input_tensor.shape[2]
if self.deploy:
return input_tensor + self.relative_bias
else:
self.grid_exists = False
if not self.grid_exists:
self.grid_exists = True
if self.rank == 1:
relative_coords_h = torch.arange(0, seq_length, device=input_tensor.device, dtype = input_tensor.dtype)
relative_coords_h -= seq_length//2
relative_coords_h /= (seq_length//2)
relative_coords_table = relative_coords_h
self.pos_emb = self.cpb_mlp(relative_coords_table.unsqueeze(0).unsqueeze(2))
self.relative_bias = self.pos_emb
else:
seq_length = int(seq_length**0.5)
relative_coords_h = torch.arange(0, seq_length, device=input_tensor.device, dtype = input_tensor.dtype)
relative_coords_w = torch.arange(0, seq_length, device=input_tensor.device, dtype = input_tensor.dtype)
relative_coords_table = torch.stack(torch.meshgrid([relative_coords_h, relative_coords_w])).contiguous().unsqueeze(0)
relative_coords_table -= seq_length // 2
relative_coords_table /= (seq_length // 2)
if not self.conv:
self.pos_emb = self.cpb_mlp(relative_coords_table.flatten(2).transpose(1,2))
else:
self.pos_emb = self.cpb_mlp(relative_coords_table.flatten(2))
self.relative_bias = self.pos_emb
input_tensor = input_tensor + self.pos_emb
return input_tensor
class Mlp(nn.Module):
"""
Multi-Layer Perceptron (MLP) block
"""
def __init__(self,
in_features,
hidden_features=None,
out_features=None,
act_layer=nn.GELU,
drop=0.):
"""
Args:
in_features: input features dimension.
hidden_features: hidden features dimension.
out_features: output features dimension.
act_layer: activation function.
drop: dropout rate.
"""
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x_size = x.size()
x = x.view(-1, x_size[-1])
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
x = x.view(x_size)
return x
class Downsample(nn.Module):
"""
Down-sampling block based on: "Hatamizadeh et al.,
FasterViT: Fast Vision Transformers with Hierarchical Attention
"""
def __init__(self,
dim,
out_dim,
keep_dim=False,
stride=2,
):
"""
Args:
dim: feature size dimension.
norm_layer: normalization layer.
keep_dim: bool argument for maintaining the resolution.
"""
super().__init__()
if keep_dim:
out_dim = dim
self.norm = LayerNorm2d(dim)
self.reduction = nn.Sequential(
nn.Conv2d(dim, out_dim, 3, stride, 1, bias=False),
)
def forward(self, x):
x = self.norm(x)
x = self.reduction(x)
return x
class PatchEmbed(nn.Module):
"""
Patch embedding block based on: "Hatamizadeh et al.,
FasterViT: Fast Vision Transformers with Hierarchical Attention
"""
def __init__(self, in_chans=3, in_dim=64, dim=96):
"""
Args:
in_chans: number of input channels.
dim: feature size dimension.
"""
super().__init__()
self.proj = nn.Identity()
self.conv_down = nn.Sequential(
nn.Conv2d(in_chans, in_dim, 3, 2, 1, bias=False),
nn.BatchNorm2d(in_dim, eps=1e-4),
nn.ReLU(),
nn.Conv2d(in_dim, dim, 3, 2, 1, bias=False),
nn.BatchNorm2d(dim, eps=1e-4),
nn.ReLU()
)
def forward(self, x):
x = self.proj(x)
x = self.conv_down(x)
return x
class ConvBlock(nn.Module):
"""
Conv block based on: "Hatamizadeh et al.,
FasterViT: Fast Vision Transformers with Hierarchical Attention
"""
def __init__(self, dim,
drop_path=0.,
layer_scale=None,
kernel_size=3):
super().__init__()
"""
Args:
drop_path: drop path.
layer_scale: layer scale coefficient.
kernel_size: kernel size.
"""
self.conv1 = nn.Conv2d(dim, dim, kernel_size=kernel_size, stride=1, padding=1)
self.norm1 = nn.BatchNorm2d(dim, eps=1e-5)
self.act1 = nn.GELU()
self.conv2 = nn.Conv2d(dim, dim, kernel_size=kernel_size, stride=1, padding=1)
self.norm2 = nn.BatchNorm2d(dim, eps=1e-5)
self.layer_scale = layer_scale
if layer_scale is not None and type(layer_scale) in [int, float]:
self.gamma = nn.Parameter(layer_scale * torch.ones(dim))
self.layer_scale = True
else:
self.layer_scale = False
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
def forward(self, x, global_feature=None):
input = x
x = self.conv1(x)
x = self.norm1(x)
x = self.act1(x)
x = self.conv2(x)
x = self.norm2(x)
if self.layer_scale:
x = x * self.gamma.view(1, -1, 1, 1)
x = input + self.drop_path(x)
return x, global_feature
class WindowAttention(nn.Module):
"""
Window attention based on: "Hatamizadeh et al.,
FasterViT: Fast Vision Transformers with Hierarchical Attention
"""
def __init__(self,
dim,
num_heads=8,
qkv_bias=False,
qk_scale=None,
attn_drop=0.,
proj_drop=0.,
resolution=0,
seq_length=0):
super().__init__()
"""
Args:
dim: feature size dimension.
num_heads: number of attention head.
qkv_bias: bool argument for query, key, value learnable bias.
qk_scale: bool argument to scaling query, key.
attn_drop: attention dropout rate.
proj_drop: output dropout rate.
resolution: feature resolution.
seq_length: sequence length.
"""
self.num_heads = num_heads
head_dim = dim // num_heads
self.head_dim = dim // num_heads
self.scale = qk_scale or head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
# attention positional bias
self.pos_emb_funct = PosEmbMLPSwinv2D(window_size=[resolution, resolution],
pretrained_window_size=[resolution, resolution],
num_heads=num_heads,
seq_length=seq_length)
self.resolution = resolution
def forward(self, x):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, -1, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2]
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = self.pos_emb_funct(attn, self.resolution ** 2)
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, -1, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class HAT(nn.Module):
"""
Hierarchical attention (HAT) based on: "Hatamizadeh et al.,
FasterViT: Fast Vision Transformers with Hierarchical Attention
"""
def __init__(self,
dim,
num_heads,
mlp_ratio=4.,
qkv_bias=False,
qk_scale=None,
drop=0.,
attn_drop=0.,
drop_path=0.,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
sr_ratio=1.,
window_size=7,
last=False,
layer_scale=None,
ct_size=1,
do_propagation=False):
super().__init__()
"""
Args:
dim: feature size dimension.
num_heads: number of attention head.
mlp_ratio: MLP ratio.
qkv_bias: bool argument for query, key, value learnable bias.
qk_scale: bool argument to scaling query, key.
drop: dropout rate.
attn_drop: attention dropout rate.
proj_drop: output dropout rate.
act_layer: activation function.
norm_layer: normalization layer.
sr_ratio: input to window size ratio.
window_size: window size.
last: last layer flag.
layer_scale: layer scale coefficient.
ct_size: spatial dimension of carrier token local window.
do_propagation: enable carrier token propagation.
"""
# positional encoding for windowed attention tokens
self.pos_embed = PosEmbMLPSwinv1D(dim, rank=2, seq_length=window_size**2)
self.norm1 = norm_layer(dim)
# number of carrier tokens per every window
cr_tokens_per_window = ct_size**2 if sr_ratio > 1 else 0
# total number of carrier tokens
cr_tokens_total = cr_tokens_per_window*sr_ratio*sr_ratio
self.cr_window = ct_size
self.attn = WindowAttention(dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
proj_drop=drop,
resolution=window_size,
seq_length=window_size**2 + cr_tokens_per_window)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
self.window_size = window_size
use_layer_scale = layer_scale is not None and type(layer_scale) in [int, float]
self.gamma3 = nn.Parameter(layer_scale * torch.ones(dim)) if use_layer_scale else 1
self.gamma4 = nn.Parameter(layer_scale * torch.ones(dim)) if use_layer_scale else 1
self.sr_ratio = sr_ratio
if sr_ratio > 1:
# if do hierarchical attention, this part is for carrier tokens
self.hat_norm1 = norm_layer(dim)
self.hat_norm2 = norm_layer(dim)
self.hat_attn = WindowAttention(
dim,
num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
attn_drop=attn_drop, proj_drop=drop, resolution=int(cr_tokens_total**0.5),
seq_length=cr_tokens_total)
self.hat_mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
self.hat_drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.hat_pos_embed = PosEmbMLPSwinv1D(dim, rank=2, seq_length=cr_tokens_total)
self.gamma1 = nn.Parameter(layer_scale * torch.ones(dim)) if use_layer_scale else 1
self.gamma2 = nn.Parameter(layer_scale * torch.ones(dim)) if use_layer_scale else 1
self.upsampler = nn.Upsample(size=window_size, mode='nearest')
# keep track for the last block to explicitly add carrier tokens to feature maps
self.last = last
self.do_propagation = do_propagation
def forward(self, x, carrier_tokens):
B, T, N = x.shape
ct = carrier_tokens
x = self.pos_embed(x)
if self.sr_ratio > 1:
# do hierarchical attention via carrier tokens
# first do attention for carrier tokens
Bg, Ng, Hg = ct.shape
# ct are located quite differently
ct = ct_dewindow(ct, self.cr_window*self.sr_ratio, self.cr_window*self.sr_ratio, self.cr_window)
# positional bias for carrier tokens
ct = self.hat_pos_embed(ct)
# attention plus mlp
ct = ct + self.hat_drop_path(self.gamma1*self.hat_attn(self.hat_norm1(ct)))
ct = ct + self.hat_drop_path(self.gamma2*self.hat_mlp(self.hat_norm2(ct)))
# ct are put back to windows
ct = ct_window(ct, self.cr_window * self.sr_ratio, self.cr_window * self.sr_ratio, self.cr_window)
ct = ct.reshape(x.shape[0], -1, N)
# concatenate carrier_tokens to the windowed tokens
x = torch.cat((ct, x), dim=1)
# window attention together with carrier tokens
x = x + self.drop_path(self.gamma3*self.attn(self.norm1(x)))
x = x + self.drop_path(self.gamma4*self.mlp(self.norm2(x)))
if self.sr_ratio > 1:
# for hierarchical attention we need to split carrier tokens and window tokens back
ctr, x = x.split([x.shape[1] - self.window_size*self.window_size, self.window_size*self.window_size], dim=1)
ct = ctr.reshape(Bg, Ng, Hg) # reshape carrier tokens.
if self.last and self.do_propagation:
# propagate carrier token information into the image
ctr_image_space = ctr.transpose(1, 2).reshape(B, N, self.cr_window, self.cr_window)
x = x + self.gamma1 * self.upsampler(ctr_image_space.to(dtype=torch.float32)).flatten(2).transpose(1, 2).to(dtype=x.dtype)
return x, ct
class TokenInitializer(nn.Module):
"""
Carrier token Initializer based on: "Hatamizadeh et al.,
FasterViT: Fast Vision Transformers with Hierarchical Attention
"""
def __init__(self,
dim,
input_resolution,
window_size,
ct_size=1):
"""
Args:
dim: feature size dimension.
input_resolution: input image resolution.
window_size: window size.
ct_size: spatial dimension of carrier token local window
"""
super().__init__()
output_size = int(ct_size * input_resolution/window_size)
stride_size = int(input_resolution/output_size)
kernel_size = input_resolution - (output_size - 1) * stride_size
self.pos_embed = nn.Conv2d(dim, dim, 3, padding=1, groups=dim)
to_global_feature = nn.Sequential()
to_global_feature.add_module("pos", self.pos_embed)
to_global_feature.add_module("pool", nn.AvgPool2d(kernel_size=kernel_size, stride=stride_size))
self.to_global_feature = to_global_feature
self.window_size = ct_size
def forward(self, x):
x = self.to_global_feature(x)
B, C, H, W = x.shape
ct = x.view(B, C, H // self.window_size, self.window_size, W // self.window_size, self.window_size)
ct = ct.permute(0, 2, 4, 3, 5, 1).reshape(-1, H*W, C)
return ct
class FasterViTLayer(nn.Module):
"""
GCViT layer based on: "Hatamizadeh et al.,
Global Context Vision Transformers <https://arxiv.org/abs/2206.09959>"
"""
def __init__(self,
dim,
out_dim,
depth,
input_resolution,
num_heads,
window_size,
ct_size=1,
conv=False,
downsample=True,
mlp_ratio=4.,
qkv_bias=True,
qk_scale=None,
drop=0.,
attn_drop=0.,
drop_path=0.,
layer_scale=None,
layer_scale_conv=None,
only_local=False,
hierarchy=True,
do_propagation=False
):
"""
Args:
dim: feature size dimension.
depth: layer depth.
input_resolution: input resolution.
num_heads: number of attention head.
window_size: window size.
ct_size: spatial dimension of carrier token local window.
conv: conv_based stage flag.
downsample: downsample flag.
mlp_ratio: MLP ratio.
qkv_bias: bool argument for query, key, value learnable bias.
qk_scale: bool argument to scaling query, key.
drop: dropout rate.
attn_drop: attention dropout rate.
drop_path: drop path rate.
layer_scale: layer scale coefficient.
layer_scale_conv: conv layer scale coefficient.
only_local: local attention flag.
hierarchy: hierarchical attention flag.
do_propagation: enable carrier token propagation.
"""
super().__init__()
self.conv = conv
self.transformer_block = False
if conv:
self.blocks = nn.ModuleList([
ConvBlock(dim=dim,
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
layer_scale=layer_scale_conv)
for i in range(depth)])
self.transformer_block = False
else:
sr_ratio = input_resolution // window_size if not only_local else 1
self.blocks = nn.ModuleList([
HAT(dim=dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop,
attn_drop=attn_drop,
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
sr_ratio=sr_ratio,
window_size=window_size,
last=(i == depth-1),
layer_scale=layer_scale,
ct_size=ct_size,
do_propagation=do_propagation,
)
for i in range(depth)])
self.transformer_block = True
self.downsample = Downsample(dim=dim, out_dim=out_dim, stride=1) if not downsample else Downsample(dim=dim, out_dim=out_dim, stride=2)
if len(self.blocks) and not only_local and input_resolution // window_size > 1 and hierarchy and not self.conv:
self.global_tokenizer = TokenInitializer(dim,
input_resolution,
window_size,
ct_size=ct_size)
self.do_gt = True
else:
self.do_gt = False
self.window_size = window_size
def forward(self, x):
ct = self.global_tokenizer(x) if self.do_gt else None
B, C, H, W = x.shape
if self.transformer_block:
x = window_partition(x, self.window_size)
for bn, blk in enumerate(self.blocks):
x, ct = blk(x, ct)
if self.transformer_block:
x = window_reverse(x, self.window_size, H, W, B)
if self.downsample is None:
return x
return self.downsample(x) |