Spaces:
Runtime error
Runtime error
import torch, torchvision | |
import sys | |
# sys.path.insert(0, 'test_mmpose/') | |
try: | |
from mmcv.ops import get_compiling_cuda_version, get_compiler_version | |
except: | |
import mim | |
mim.install('mmcv-full==1.5.0') | |
import mmpose | |
import gradio as gr | |
from mmpose.apis import (inference_top_down_pose_model, init_pose_model, | |
vis_pose_result, process_mmdet_results) | |
from mmdet.apis import inference_detector, init_detector | |
from PIL import Image | |
import cv2 | |
import numpy as np | |
pose_config = 'configs/topdown_heatmap_hrnet_w48_coco_256x192.py' | |
pose_checkpoint = 'hrnet_w48_coco_256x192-b9e0b3ab_20200708.pth' | |
det_config = 'configs/faster_rcnn_r50_fpn_1x_coco.py' | |
det_checkpoint = 'faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth' | |
# initialize pose model | |
pose_model = init_pose_model(pose_config, pose_checkpoint, device='cpu') | |
# initialize detector | |
det_model = init_detector(det_config, det_checkpoint, device='cpu') | |
def predict(img): | |
mmdet_results = inference_detector(det_model, img) | |
person_results = process_mmdet_results(mmdet_results, cat_id=1) | |
pose_results, returned_outputs = inference_top_down_pose_model( | |
pose_model, | |
img, | |
person_results, | |
bbox_thr=0.3, | |
format='xyxy', | |
dataset=pose_model.cfg.data.test.type) | |
vis_result = vis_pose_result( | |
pose_model, | |
img, | |
pose_results, | |
dataset=pose_model.cfg.data.test.type, | |
show=False) | |
#original_image = Image.open(img) | |
width, height, channels = img.shape | |
#vis_result = cv2.resize(vis_result, dsize=None, fx=0.5, fy=0.5) | |
print(f"POSE_RESULTS: {pose_results}") | |
# define colors for each body part | |
body_part = { | |
"nose": 0, | |
"left_eye": 1, | |
"right_eye": 2, | |
"left_ear": 3, | |
"right_ear": 4, | |
"left_shoulder": 5, | |
"right_shoulder": 6, | |
"left_elbow": 7, | |
"right_elbow": 8, | |
"left_wrist": 9, | |
"right_wrist": 10, | |
"left_hip": 11, | |
"right_hip": 12, | |
"left_knee": 13, | |
"right_knee": 14, | |
"left_ankle": 15, | |
"right_ankle": 16 | |
} | |
orange=(51,153,255) | |
blue=(255,128,0) | |
green=(0,255,0) | |
# create a black image of the same size as the original image | |
black_img = np.zeros((width, height, 3), np.uint8) | |
# iterate through each person in the POSE_RESULTS data | |
for person in pose_results: | |
# get the keypoints for this person | |
keypoints = person['keypoints'] | |
# draw lines between keypoints to form a skeleton | |
skeleton = [("right_eye", "left_eye", orange),("nose", "left_eye", orange), ("left_eye", "left_ear", orange), ("nose", "right_eye", orange), ("right_eye", "right_ear", orange), | |
("left_shoulder", "left_ear", orange),("right_shoulder", "right_ear", orange), ("left_shoulder", "right_shoulder", orange), ("left_shoulder", "left_elbow", green), ("right_shoulder", "right_elbow",blue), | |
("left_elbow", "left_wrist",green), ("right_elbow", "right_wrist",blue), ("left_shoulder", "left_hip",orange), | |
("right_shoulder", "right_hip", orange), ("left_hip", "right_hip", orange), ("left_hip", "left_knee",green), | |
("right_hip", "right_knee",blue), ("left_knee", "left_ankle",green), ("right_knee", "right_ankle",blue)] | |
for start_part, end_part, color in skeleton: | |
start_idx = list(body_part.keys()).index(start_part) | |
end_idx = list(body_part.keys()).index(end_part) | |
if keypoints[start_idx][2] > 0.1 and keypoints[end_idx][2] > 0.1: | |
pt1 = (int(keypoints[start_idx][0]), int(keypoints[start_idx][1])) | |
pt2 = (int(keypoints[end_idx][0]), int(keypoints[end_idx][1])) | |
cv2.line(black_img, pt1, pt2, color, thickness=2, lineType=cv2.LINE_AA) | |
# draw circles at each keypoint | |
#for i in range(keypoints.shape[0]): | |
# pt = (int(keypoints[i][0]), int(keypoints[i][1])) | |
# cv2.circle(black_img, pt, 3, (255, 255, 255), thickness=-1, lineType=cv2.LINE_AA) | |
# write black_img to a jpg file | |
cv2.waitKey(0) | |
cv2.imwrite("output.jpg", black_img) | |
cv2.destroyAllWindows() | |
return vis_result, "output.jpg" | |
example_list = ['examples/demo2.png'] | |
title = "MMPose estimation" | |
description = "" | |
article = "" | |
# Create the Gradio demo | |
demo = gr.Interface(fn=predict, | |
inputs=gr.Image(), | |
outputs=[gr.Image(label='Prediction'), gr.Image(label='Poses')], | |
examples=example_list, | |
title=title, | |
description=description, | |
article=article) | |
# Launch the demo! | |
demo.launch() |