File size: 23,535 Bytes
da48dbe
 
 
 
 
487ee6d
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
487ee6d
da48dbe
 
 
 
 
 
487ee6d
 
 
da48dbe
 
 
 
 
 
 
 
 
fb140f6
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
da48dbe
 
 
 
 
fb140f6
 
 
da48dbe
 
 
 
 
 
 
fb140f6
da48dbe
fb140f6
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
 
 
da48dbe
 
 
 
 
 
 
fb140f6
da48dbe
fb140f6
da48dbe
 
 
 
fb140f6
da48dbe
 
 
 
 
 
 
 
fb140f6
 
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
da48dbe
 
 
 
fb140f6
da48dbe
 
 
 
 
 
 
 
fb140f6
 
 
 
da48dbe
 
 
 
 
 
487ee6d
 
 
 
 
 
 
 
 
 
 
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
 
 
 
 
 
da48dbe
 
 
fb140f6
 
 
da48dbe
fb140f6
 
da48dbe
fb140f6
 
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
 
da48dbe
 
487ee6d
 
 
da48dbe
 
fb140f6
da48dbe
 
487ee6d
 
 
da48dbe
 
 
 
 
 
fb140f6
 
da48dbe
 
fb140f6
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
da48dbe
 
fb140f6
da48dbe
 
 
 
 
 
 
 
 
 
 
fb140f6
 
 
da48dbe
fb140f6
 
da48dbe
 
 
 
 
 
 
 
 
 
 
 
fb140f6
 
da48dbe
 
487ee6d
 
fb140f6
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
 
 
 
 
 
 
 
 
da48dbe
 
fb140f6
da48dbe
 
fb140f6
 
 
 
 
 
da48dbe
 
 
fb140f6
 
 
da48dbe
fb140f6
 
da48dbe
fb140f6
 
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
da48dbe
 
 
fb140f6
 
 
 
 
 
da48dbe
 
 
fb140f6
 
 
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
 
 
da48dbe
 
 
 
fb140f6
da48dbe
fb140f6
 
 
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
 
 
 
 
 
da48dbe
 
fb140f6
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
da48dbe
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
"""
Author: Yao Feng
Copyright (c) 2020, Yao Feng
All rights reserved.
"""
import imageio
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from skimage.io import imread

from . import util


def set_rasterizer(type="pytorch3d"):
    if type == "pytorch3d":
        global Meshes, load_obj, rasterize_meshes
        from pytorch3d.io import load_obj
        from pytorch3d.renderer.mesh import rasterize_meshes
        from pytorch3d.structures import Meshes
    elif type == "standard":
        global standard_rasterize, load_obj
        import os

        # Use JIT Compiling Extensions
        # ref: https://pytorch.org/tutorials/advanced/cpp_extension.html
        from torch.utils.cpp_extension import CUDA_HOME, load

        from .util import load_obj

        curr_dir = os.path.dirname(__file__)
        standard_rasterize_cuda = load(
            name="standard_rasterize_cuda",
            sources=[
                f"{curr_dir}/rasterizer/standard_rasterize_cuda.cpp",
                f"{curr_dir}/rasterizer/standard_rasterize_cuda_kernel.cu",
            ],
            extra_cuda_cflags=["-std=c++14", "-ccbin=$$(which gcc-7)"],
        )    # cuda10.2 is not compatible with gcc9. Specify gcc 7
        from standard_rasterize_cuda import standard_rasterize

        # If JIT does not work, try manually installation first
        # 1. see instruction here: pixielib/utils/rasterizer/INSTALL.md
        # 2. add this: "from .rasterizer.standard_rasterize_cuda import standard_rasterize" here


class StandardRasterizer(nn.Module):
    """Alg: https://www.scratchapixel.com/lessons/3d-basic-rendering/rasterization-practical-implementation
    Notice:
        x,y,z are in image space, normalized to [-1, 1]
        can render non-squared image
        not differentiable
    """
    def __init__(self, height, width=None):
        """
        use fixed raster_settings for rendering faces
        """
        super().__init__()
        if width is None:
            width = height
        self.h = h = height
        self.w = w = width

    def forward(self, vertices, faces, attributes=None, h=None, w=None):
        device = vertices.device
        if h is None:
            h = self.h
        if w is None:
            w = self.h
        bz = vertices.shape[0]
        depth_buffer = torch.zeros([bz, h, w]).float().to(device) + 1e6
        triangle_buffer = torch.zeros([bz, h, w]).int().to(device) - 1
        baryw_buffer = torch.zeros([bz, h, w, 3]).float().to(device)
        vert_vis = torch.zeros([bz, vertices.shape[1]]).float().to(device)

        vertices = vertices.clone().float()
        vertices[..., 0] = vertices[..., 0] * w / 2 + w / 2
        vertices[..., 1] = vertices[..., 1] * h / 2 + h / 2
        vertices[..., 2] = vertices[..., 2] * w / 2
        f_vs = util.face_vertices(vertices, faces)

        standard_rasterize(f_vs, depth_buffer, triangle_buffer, baryw_buffer, h, w)
        pix_to_face = triangle_buffer[:, :, :, None].long()
        bary_coords = baryw_buffer[:, :, :, None, :]
        vismask = (pix_to_face > -1).float()
        D = attributes.shape[-1]
        attributes = attributes.clone()
        attributes = attributes.view(
            attributes.shape[0] * attributes.shape[1], 3, attributes.shape[-1]
        )
        N, H, W, K, _ = bary_coords.shape
        mask = pix_to_face == -1
        pix_to_face = pix_to_face.clone()
        pix_to_face[mask] = 0
        idx = pix_to_face.view(N * H * W * K, 1, 1).expand(N * H * W * K, 3, D)
        pixel_face_vals = attributes.gather(0, idx).view(N, H, W, K, 3, D)
        pixel_vals = (bary_coords[..., None] * pixel_face_vals).sum(dim=-2)
        pixel_vals[mask] = 0    # Replace masked values in output.
        pixel_vals = pixel_vals[:, :, :, 0].permute(0, 3, 1, 2)
        pixel_vals = torch.cat([pixel_vals, vismask[:, :, :, 0][:, None, :, :]], dim=1)
        return pixel_vals


class Pytorch3dRasterizer(nn.Module):
    """Borrowed from https://github.com/facebookresearch/pytorch3d
    This class implements methods for rasterizing a batch of heterogenous Meshes.
    Notice:
        x,y,z are in image space, normalized
        can only render squared image now
    """
    def __init__(self, image_size=224):
        """
        use fixed raster_settings for rendering faces
        """
        super().__init__()
        raster_settings = {
            "image_size": image_size,
            "blur_radius": 0.0,
            "faces_per_pixel": 1,
            "bin_size": -1,
            "max_faces_per_bin": None,
            "perspective_correct": False,
        }
        raster_settings = util.dict2obj(raster_settings)
        self.raster_settings = raster_settings

    def forward(self, vertices, faces, attributes=None, h=None, w=None):
        fixed_vertices = vertices.clone()
        fixed_vertices[..., :2] = -fixed_vertices[..., :2]
        meshes_screen = Meshes(verts=fixed_vertices.float(), faces=faces.long())
        raster_settings = self.raster_settings
        pix_to_face, zbuf, bary_coords, dists = rasterize_meshes(
            meshes_screen,
            image_size=raster_settings.image_size,
            blur_radius=raster_settings.blur_radius,
            faces_per_pixel=raster_settings.faces_per_pixel,
            bin_size=raster_settings.bin_size,
            max_faces_per_bin=raster_settings.max_faces_per_bin,
            perspective_correct=raster_settings.perspective_correct,
        )
        vismask = (pix_to_face > -1).float()
        D = attributes.shape[-1]
        attributes = attributes.clone()
        attributes = attributes.view(
            attributes.shape[0] * attributes.shape[1], 3, attributes.shape[-1]
        )
        N, H, W, K, _ = bary_coords.shape
        mask = pix_to_face == -1
        pix_to_face = pix_to_face.clone()
        pix_to_face[mask] = 0
        idx = pix_to_face.view(N * H * W * K, 1, 1).expand(N * H * W * K, 3, D)
        pixel_face_vals = attributes.gather(0, idx).view(N, H, W, K, 3, D)
        pixel_vals = (bary_coords[..., None] * pixel_face_vals).sum(dim=-2)
        pixel_vals[mask] = 0    # Replace masked values in output.
        pixel_vals = pixel_vals[:, :, :, 0].permute(0, 3, 1, 2)
        pixel_vals = torch.cat([pixel_vals, vismask[:, :, :, 0][:, None, :, :]], dim=1)
        return pixel_vals


class SRenderY(nn.Module):
    def __init__(self, image_size, obj_filename, uv_size=256, rasterizer_type="standard"):
        super(SRenderY, self).__init__()
        self.image_size = image_size
        self.uv_size = uv_size

        if rasterizer_type == "pytorch3d":
            self.rasterizer = Pytorch3dRasterizer(image_size)
            self.uv_rasterizer = Pytorch3dRasterizer(uv_size)
            verts, faces, aux = load_obj(obj_filename)
            uvcoords = aux.verts_uvs[None, ...]    # (N, V, 2)
            uvfaces = faces.textures_idx[None, ...]    # (N, F, 3)
            faces = faces.verts_idx[None, ...]
        elif rasterizer_type == "standard":
            self.rasterizer = StandardRasterizer(image_size)
            self.uv_rasterizer = StandardRasterizer(uv_size)
            verts, uvcoords, faces, uvfaces = load_obj(obj_filename)
            verts = verts[None, ...]
            uvcoords = uvcoords[None, ...]
            faces = faces[None, ...]
            uvfaces = uvfaces[None, ...]
        else:
            NotImplementedError

        # faces
        dense_triangles = util.generate_triangles(uv_size, uv_size)
        self.register_buffer("dense_faces", torch.from_numpy(dense_triangles).long()[None, :, :])
        self.register_buffer("faces", faces)
        self.register_buffer("raw_uvcoords", uvcoords)

        # uv coords
        uvcoords = torch.cat([uvcoords, uvcoords[:, :, 0:1] * 0.0 + 1.0], -1)    # [bz, ntv, 3]
        uvcoords = uvcoords * 2 - 1
        uvcoords[..., 1] = -uvcoords[..., 1]
        face_uvcoords = util.face_vertices(uvcoords, uvfaces)
        self.register_buffer("uvcoords", uvcoords)
        self.register_buffer("uvfaces", uvfaces)
        self.register_buffer("face_uvcoords", face_uvcoords)

        # shape colors, for rendering shape overlay
        colors = (
            torch.tensor([180, 180, 180])[None, None, :].repeat(1,
                                                                faces.max() + 1, 1).float() / 255.0
        )
        face_colors = util.face_vertices(colors, faces)
        self.register_buffer("vertex_colors", colors)
        self.register_buffer("face_colors", face_colors)

        # SH factors for lighting
        pi = np.pi
        constant_factor = torch.tensor([
            1 / np.sqrt(4 * pi),
            ((2 * pi) / 3) * (np.sqrt(3 / (4 * pi))),
            ((2 * pi) / 3) * (np.sqrt(3 / (4 * pi))),
            ((2 * pi) / 3) * (np.sqrt(3 / (4 * pi))),
            (pi / 4) * (3) * (np.sqrt(5 / (12 * pi))),
            (pi / 4) * (3) * (np.sqrt(5 / (12 * pi))),
            (pi / 4) * (3) * (np.sqrt(5 / (12 * pi))),
            (pi / 4) * (3 / 2) * (np.sqrt(5 / (12 * pi))),
            (pi / 4) * (1 / 2) * (np.sqrt(5 / (4 * pi))),
        ]).float()
        self.register_buffer("constant_factor", constant_factor)

    def forward(
        self,
        vertices,
        transformed_vertices,
        albedos,
        lights=None,
        light_type="point",
        background=None,
        h=None,
        w=None,
    ):
        """
        -- Texture Rendering
        vertices: [batch_size, V, 3], vertices in world space, for calculating normals, then shading
        transformed_vertices: [batch_size, V, 3], rnage:[-1,1], projected vertices, in image space, for rasterization
        albedos: [batch_size, 3, h, w], uv map
        lights:
            spherical homarnic: [N, 9(shcoeff), 3(rgb)]
            points/directional lighting: [N, n_lights, 6(xyzrgb)]
        light_type:
            point or directional
        """
        batch_size = vertices.shape[0]
        # normalize z to 10-90 for raterization (in pytorch3d, near far: 0-100)
        transformed_vertices = transformed_vertices.clone()
        transformed_vertices[:, :, 2] = (
            transformed_vertices[:, :, 2] - transformed_vertices[:, :, 2].min()
        )
        transformed_vertices[:, :, 2] = (
            transformed_vertices[:, :, 2] / transformed_vertices[:, :, 2].max()
        )
        transformed_vertices[:, :, 2] = transformed_vertices[:, :, 2] * 80 + 10

        # attributes
        face_vertices = util.face_vertices(vertices, self.faces.expand(batch_size, -1, -1))
        normals = util.vertex_normals(vertices, self.faces.expand(batch_size, -1, -1))
        face_normals = util.face_vertices(normals, self.faces.expand(batch_size, -1, -1))
        transformed_normals = util.vertex_normals(
            transformed_vertices, self.faces.expand(batch_size, -1, -1)
        )
        transformed_face_normals = util.face_vertices(
            transformed_normals, self.faces.expand(batch_size, -1, -1)
        )
        attributes = torch.cat(
            [
                self.face_uvcoords.expand(batch_size, -1, -1, -1),
                transformed_face_normals.detach(),
                face_vertices.detach(),
                face_normals,
            ],
            -1,
        )

        # rasterize
        rendering = self.rasterizer(
            transformed_vertices,
            self.faces.expand(batch_size, -1, -1),
            attributes,
            h,
            w,
        )

        ####
        # vis mask
        alpha_images = rendering[:, -1, :, :][:, None, :, :].detach()

        # albedo
        uvcoords_images = rendering[:, :3, :, :]
        grid = (uvcoords_images).permute(0, 2, 3, 1)[:, :, :, :2]
        albedo_images = F.grid_sample(albedos, grid, align_corners=False)

        # visible mask for pixels with positive normal direction
        transformed_normal_map = rendering[:, 3:6, :, :].detach()
        pos_mask = (transformed_normal_map[:, 2:, :, :] < -0.05).float()

        # shading
        normal_images = rendering[:, 9:12, :, :]
        if lights is not None:
            if lights.shape[1] == 9:
                shading_images = self.add_SHlight(normal_images, lights)
            else:
                if light_type == "point":
                    vertice_images = rendering[:, 6:9, :, :].detach()
                    shading = self.add_pointlight(
                        vertice_images.permute(0, 2, 3, 1).reshape([batch_size, -1, 3]),
                        normal_images.permute(0, 2, 3, 1).reshape([batch_size, -1, 3]),
                        lights,
                    )
                    shading_images = shading.reshape([
                        batch_size, albedo_images.shape[2], albedo_images.shape[3], 3
                    ]).permute(0, 3, 1, 2)
                else:
                    shading = self.add_directionlight(
                        normal_images.permute(0, 2, 3, 1).reshape([batch_size, -1, 3]),
                        lights,
                    )
                    shading_images = shading.reshape([
                        batch_size, albedo_images.shape[2], albedo_images.shape[3], 3
                    ]).permute(0, 3, 1, 2)
            images = albedo_images * shading_images
        else:
            images = albedo_images
            shading_images = images.detach() * 0.0

        if background is None:
            images = images * alpha_images + torch.ones_like(images).to(vertices.device
                                                                       ) * (1 - alpha_images)
        else:
            # background = F.interpolate(background, [self.image_size, self.image_size])
            images = images * alpha_images + background.contiguous() * (1 - alpha_images)

        outputs = {
            "images": images,
            "albedo_images": albedo_images,
            "alpha_images": alpha_images,
            "pos_mask": pos_mask,
            "shading_images": shading_images,
            "grid": grid,
            "normals": normals,
            "normal_images": normal_images,
            "transformed_normals": transformed_normals,
        }

        return outputs

    def add_SHlight(self, normal_images, sh_coeff):
        """
        sh_coeff: [bz, 9, 3]
        """
        N = normal_images
        sh = torch.stack(
            [
                N[:, 0] * 0.0 + 1.0,
                N[:, 0],
                N[:, 1],
                N[:, 2],
                N[:, 0] * N[:, 1],
                N[:, 0] * N[:, 2],
                N[:, 1] * N[:, 2],
                N[:, 0]**2 - N[:, 1]**2,
                3 * (N[:, 2]**2) - 1,
            ],
            1,
        )    # [bz, 9, h, w]
        sh = sh * self.constant_factor[None, :, None, None]
        # [bz, 9, 3, h, w]
        shading = torch.sum(sh_coeff[:, :, :, None, None] * sh[:, :, None, :, :], 1)
        return shading

    def add_pointlight(self, vertices, normals, lights):
        """
            vertices: [bz, nv, 3]
            lights: [bz, nlight, 6]
        returns:
            shading: [bz, nv, 3]
        """
        light_positions = lights[:, :, :3]
        light_intensities = lights[:, :, 3:]
        directions_to_lights = F.normalize(
            light_positions[:, :, None, :] - vertices[:, None, :, :], dim=3
        )
        # normals_dot_lights = torch.clamp((normals[:,None,:,:]*directions_to_lights).sum(dim=3), 0., 1.)
        normals_dot_lights = (normals[:, None, :, :] * directions_to_lights).sum(dim=3)
        shading = normals_dot_lights[:, :, :, None] * light_intensities[:, :, None, :]
        return shading.mean(1)

    def add_directionlight(self, normals, lights):
        """
            normals: [bz, nv, 3]
            lights: [bz, nlight, 6]
        returns:
            shading: [bz, nv, 3]
        """
        light_direction = lights[:, :, :3]
        light_intensities = lights[:, :, 3:]
        directions_to_lights = F.normalize(
            light_direction[:, :, None, :].expand(-1, -1, normals.shape[1], -1), dim=3
        )
        # normals_dot_lights = torch.clamp((normals[:,None,:,:]*directions_to_lights).sum(dim=3), 0., 1.)
        # normals_dot_lights = (normals[:,None,:,:]*directions_to_lights).sum(dim=3)
        normals_dot_lights = torch.clamp((normals[:, None, :, :] * directions_to_lights).sum(dim=3),
                                         0.0, 1.0)
        shading = normals_dot_lights[:, :, :, None] * light_intensities[:, :, None, :]
        return shading.mean(1)

    def render_shape(
        self,
        vertices,
        transformed_vertices,
        colors=None,
        background=None,
        detail_normal_images=None,
        lights=None,
        return_grid=False,
        uv_detail_normals=None,
        h=None,
        w=None,
    ):
        """
        -- rendering shape with detail normal map
        """
        batch_size = vertices.shape[0]
        if lights is None:
            light_positions = (
                torch.tensor([
                    [-5, 5, -5],
                    [5, 5, -5],
                    [-5, -5, -5],
                    [5, -5, -5],
                    [0, 0, -5],
                ])[None, :, :].expand(batch_size, -1, -1).float()
            )

            light_intensities = torch.ones_like(light_positions).float() * 1.7
            lights = torch.cat((light_positions, light_intensities), 2).to(vertices.device)
        # normalize z to 10-90 for raterization (in pytorch3d, near far: 0-100)
        transformed_vertices = transformed_vertices.clone()
        transformed_vertices[:, :, 2] = (
            transformed_vertices[:, :, 2] - transformed_vertices[:, :, 2].min()
        )
        transformed_vertices[:, :, 2] = (
            transformed_vertices[:, :, 2] / transformed_vertices[:, :, 2].max()
        )
        transformed_vertices[:, :, 2] = transformed_vertices[:, :, 2] * 80 + 10

        # Attributes
        face_vertices = util.face_vertices(vertices, self.faces.expand(batch_size, -1, -1))
        normals = util.vertex_normals(vertices, self.faces.expand(batch_size, -1, -1))
        face_normals = util.face_vertices(normals, self.faces.expand(batch_size, -1, -1))
        transformed_normals = util.vertex_normals(
            transformed_vertices, self.faces.expand(batch_size, -1, -1)
        )
        transformed_face_normals = util.face_vertices(
            transformed_normals, self.faces.expand(batch_size, -1, -1)
        )
        if colors is None:
            colors = self.face_colors.expand(batch_size, -1, -1, -1)
        attributes = torch.cat(
            [
                colors,
                transformed_face_normals.detach(),
                face_vertices.detach(),
                face_normals,
                self.face_uvcoords.expand(batch_size, -1, -1, -1),
            ],
            -1,
        )
        # rasterize
        rendering = self.rasterizer(
            transformed_vertices,
            self.faces.expand(batch_size, -1, -1),
            attributes,
            h,
            w,
        )

        ####
        alpha_images = rendering[:, -1, :, :][:, None, :, :].detach()

        # albedo
        albedo_images = rendering[:, :3, :, :]
        # mask
        transformed_normal_map = rendering[:, 3:6, :, :].detach()
        pos_mask = (transformed_normal_map[:, 2:, :, :] < 0).float()

        # shading
        normal_images = rendering[:, 9:12, :, :].detach()
        vertice_images = rendering[:, 6:9, :, :].detach()
        if detail_normal_images is not None:
            normal_images = detail_normal_images
        if uv_detail_normals is not None:
            uvcoords_images = rendering[:, 12:15, :, :]
            grid = (uvcoords_images).permute(0, 2, 3, 1)[:, :, :, :2]
            detail_normal_images = F.grid_sample(uv_detail_normals, grid, align_corners=False)
            normal_images = detail_normal_images

        shading = self.add_directionlight(
            normal_images.permute(0, 2, 3, 1).reshape([batch_size, -1, 3]), lights
        )
        shading_images = (
            shading.reshape([batch_size, albedo_images.shape[2], albedo_images.shape[3],
                             3]).permute(0, 3, 1, 2).contiguous()
        )
        shaded_images = albedo_images * shading_images

        if background is None:
            shape_images = shaded_images * alpha_images + torch.ones_like(shaded_images).to(
                vertices.device
            ) * (1 - alpha_images)
        else:
            # background = F.interpolate(background, [self.image_size, self.image_size])
            shape_images = shaded_images * alpha_images + background.contiguous(
            ) * (1 - alpha_images)

        if return_grid:
            uvcoords_images = rendering[:, 12:15, :, :]
            grid = (uvcoords_images).permute(0, 2, 3, 1)[:, :, :, :2]
            return shape_images, normal_images, grid
        else:
            return shape_images

    def render_depth(self, transformed_vertices):
        """
        -- rendering depth
        """
        transformed_vertices = transformed_vertices.clone()
        batch_size = transformed_vertices.shape[0]

        transformed_vertices[:, :, 2] = (
            transformed_vertices[:, :, 2] - transformed_vertices[:, :, 2].min()
        )
        z = -transformed_vertices[:, :, 2:].repeat(1, 1, 3)
        z = z - z.min()
        z = z / z.max()
        # Attributes
        attributes = util.face_vertices(z, self.faces.expand(batch_size, -1, -1))
        # rasterize
        rendering = self.rasterizer(
            transformed_vertices, self.faces.expand(batch_size, -1, -1), attributes
        )

        ####
        alpha_images = rendering[:, -1, :, :][:, None, :, :].detach()
        depth_images = rendering[:, :1, :, :]
        return depth_images

    def render_colors(self, transformed_vertices, colors, h=None, w=None):
        """
        -- rendering colors: could be rgb color/ normals, etc
            colors: [bz, num of vertices, 3]
        """
        transformed_vertices = transformed_vertices.clone()
        batch_size = colors.shape[0]
        # normalize z to 10-90 for raterization (in pytorch3d, near far: 0-100)
        transformed_vertices[:, :, 2] = (
            transformed_vertices[:, :, 2] - transformed_vertices[:, :, 2].min()
        )
        transformed_vertices[:, :, 2] = (
            transformed_vertices[:, :, 2] / transformed_vertices[:, :, 2].max()
        )
        transformed_vertices[:, :, 2] = transformed_vertices[:, :, 2] * 80 + 10
        # Attributes
        attributes = util.face_vertices(colors, self.faces.expand(batch_size, -1, -1))
        # rasterize
        rendering = self.rasterizer(
            transformed_vertices,
            self.faces.expand(batch_size, -1, -1),
            attributes,
            h=h,
            w=w,
        )
        ####
        alpha_images = rendering[:, [-1], :, :].detach()
        images = rendering[:, :3, :, :] * alpha_images
        return images

    def world2uv(self, vertices):
        """
        project vertices from world space to uv space
        vertices: [bz, V, 3]
        uv_vertices: [bz, 3, h, w]
        """
        batch_size = vertices.shape[0]
        face_vertices = util.face_vertices(vertices, self.faces.expand(batch_size, -1, -1))
        uv_vertices = self.uv_rasterizer(
            self.uvcoords.expand(batch_size, -1, -1),
            self.uvfaces.expand(batch_size, -1, -1),
            face_vertices,
        )[:, :3]
        return uv_vertices