Spaces:
Runtime error
Runtime error
File size: 6,500 Bytes
da48dbe 487ee6d da48dbe fb140f6 de4d7c5 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
# -*- coding: utf-8 -*-
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: [email protected]
import os
from yacs.config import CfgNode as CN
_C = CN(new_allowed=True)
# needed by trainer
_C.name = "default"
_C.gpus = [0]
_C.test_gpus = [1]
_C.devices = 1
_C.root = "./data/"
_C.ckpt_dir = "./data/ckpt/"
_C.resume_path = ""
_C.normal_path = ""
_C.ifnet_path = ""
_C.results_path = "./results/"
_C.projection_mode = "orthogonal"
_C.num_views = 1
_C.sdf = False
_C.sdf_clip = 5.0
_C.lr_netF = 1e-3
_C.lr_netB = 1e-3
_C.lr_netD = 1e-3
_C.lr_G = 1e-3
_C.weight_decay = 0.0
_C.momentum = 0.0
_C.optim = "RMSprop"
_C.schedule = [5, 10, 15]
_C.gamma = 0.1
_C.overfit = False
_C.resume = False
_C.test_mode = False
_C.test_uv = False
_C.draw_geo_thres = 0.60
_C.num_sanity_val_steps = 2
_C.fast_dev = 0
_C.get_fit = False
_C.agora = False
_C.optim_cloth = False
_C.optim_body = False
_C.mcube_res = 256
_C.clean_mesh = True
_C.remesh = False
_C.body_overlap_thres = 1.0
_C.cloth_overlap_thres = 1.0
_C.batch_size = 4
_C.num_threads = 8
_C.num_epoch = 10
_C.freq_plot = 0.01
_C.freq_show_train = 0.1
_C.freq_show_val = 0.2
_C.freq_eval = 0.5
_C.accu_grad_batch = 4
_C.vol_res = 128
_C.test_items = ["sv", "mv", "mv-fusion", "hybrid", "dc-pred", "gt"]
_C.net = CN()
_C.net.gtype = "HGPIFuNet"
_C.net.ctype = "resnet18"
_C.net.classifierIMF = "MultiSegClassifier"
_C.net.netIMF = "resnet18"
_C.net.norm = "group"
_C.net.norm_mlp = "group"
_C.net.norm_color = "group"
_C.net.hg_down = "ave_pool"
_C.net.num_views = 1
_C.bni = CN()
_C.bni.k = 4
_C.bni.lambda1 = 1e-4
_C.bni.boundary_consist = 1e-6
_C.bni.poisson_depth = 10
_C.bni.use_poisson = True
_C.bni.use_smpl = ["face", "hand"]
_C.bni.use_ifnet = False
_C.bni.finish = False
_C.bni.thickness = 0.00
_C.bni.hand_thres = 4e-2
_C.bni.face_thres = 6e-2
_C.bni.hps_type = "pixie"
_C.bni.texture_src = "image"
_C.bni.cut_intersection = True
# kernel_size, stride, dilation, padding
_C.net.conv1 = [7, 2, 1, 3]
_C.net.conv3x3 = [3, 1, 1, 1]
_C.net.num_stack = 4
_C.net.num_hourglass = 2
_C.net.hourglass_dim = 256
_C.net.voxel_dim = 32
_C.net.resnet_dim = 120
_C.net.mlp_dim = [320, 1024, 512, 256, 128, 1]
_C.net.mlp_dim_knn = [320, 1024, 512, 256, 128, 3]
_C.net.mlp_dim_color = [513, 1024, 512, 256, 128, 3]
_C.net.mlp_dim_multiseg = [1088, 2048, 1024, 500]
_C.net.res_layers = [2, 3, 4]
_C.net.filter_dim = 256
_C.net.smpl_dim = 3
_C.net.cly_dim = 3
_C.net.soft_dim = 64
_C.net.z_size = 200.0
_C.net.N_freqs = 10
_C.net.geo_w = 0.1
_C.net.norm_w = 0.1
_C.net.dc_w = 0.1
_C.net.C_cat_to_G = False
_C.net.skip_hourglass = True
_C.net.use_tanh = True
_C.net.soft_onehot = True
_C.net.no_residual = True
_C.net.use_attention = False
_C.net.prior_type = "icon"
_C.net.smpl_feats = ["sdf", "vis"]
_C.net.use_filter = True
_C.net.use_cc = False
_C.net.use_PE = False
_C.net.use_IGR = False
_C.net.use_gan = False
_C.net.in_geo = ()
_C.net.in_nml = ()
_C.net.front_losses = ()
_C.net.back_losses = ()
_C.net.gan = CN()
_C.net.gan.dim_detail = 64
_C.net.gan.lambda_gan = 1
_C.net.gan.lambda_grad = 10
_C.net.gan.lambda_recon = 10
_C.net.gan.d_reg_every = 16
_C.net.gan.img_res = 512
_C.dataset = CN()
_C.dataset.root = ""
_C.dataset.cached = True
_C.dataset.set_splits = [0.95, 0.04]
_C.dataset.types = [
"3dpeople",
"axyz",
"renderpeople",
"renderpeople_p27",
"humanalloy",
]
_C.dataset.scales = [1.0, 100.0, 1.0, 1.0, 100.0 / 39.37]
_C.dataset.rp_type = "pifu900"
_C.dataset.th_type = "train"
_C.dataset.input_size = 512
_C.dataset.rotation_num = 3
_C.dataset.num_precomp = 10 # Number of segmentation classifiers
_C.dataset.num_multiseg = 500 # Number of categories per classifier
_C.dataset.num_knn = 10 # for loss/error
_C.dataset.num_knn_dis = 20 # for accuracy
_C.dataset.num_verts_max = 20000
_C.dataset.zray_type = False
_C.dataset.online_smpl = False
_C.dataset.noise_type = ["z-trans", "pose", "beta"]
_C.dataset.noise_scale = [0.0, 0.0, 0.0]
_C.dataset.num_sample_geo = 10000
_C.dataset.num_sample_color = 0
_C.dataset.num_sample_seg = 0
_C.dataset.num_sample_knn = 10000
_C.dataset.sigma_geo = 5.0
_C.dataset.sigma_color = 0.10
_C.dataset.sigma_seg = 0.10
_C.dataset.thickness_threshold = 20.0
_C.dataset.ray_sample_num = 2
_C.dataset.semantic_p = False
_C.dataset.remove_outlier = False
_C.dataset.laplacian_iters = 0
_C.dataset.prior_type = "smpl"
_C.dataset.voxel_res = 128
_C.dataset.train_bsize = 1.0
_C.dataset.val_bsize = 1.0
_C.dataset.test_bsize = 1.0
_C.dataset.single = True
def get_cfg_defaults():
"""Get a yacs CfgNode object with default values for my_project."""
# Return a clone so that the defaults will not be altered
# This is for the "local variable" use pattern
return _C.clone()
# Alternatively, provide a way to import the defaults as
# a global singleton:
cfg = _C # users can `from config import cfg`
# cfg = get_cfg_defaults()
# cfg.merge_from_file('./configs/example.yaml')
# # Now override from a list (opts could come from the command line)
# opts = ['dataset.root', './data/XXXX', 'learning_rate', '1e-2']
# cfg.merge_from_list(opts)
def update_cfg(cfg_file):
# cfg = get_cfg_defaults()
_C.merge_from_file(cfg_file)
# return cfg.clone()
return _C
def parse_args(args):
cfg_file = args.cfg_file
if args.cfg_file is not None:
cfg = update_cfg(args.cfg_file)
else:
cfg = get_cfg_defaults()
# if args.misc is not None:
# cfg.merge_from_list(args.misc)
return cfg
def parse_args_extend(args):
if args.resume:
if not os.path.exists(args.log_dir):
raise ValueError("Experiment are set to resume mode, but log directory does not exist.")
# load log's cfg
cfg_file = os.path.join(args.log_dir, "cfg.yaml")
cfg = update_cfg(cfg_file)
if args.misc is not None:
cfg.merge_from_list(args.misc)
else:
parse_args(args)
|