File size: 12,341 Bytes
c1ffcb6
487ee6d
 
da48dbe
 
 
487ee6d
da48dbe
487ee6d
da48dbe
fb140f6
 
da48dbe
487ee6d
 
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
da48dbe
fb140f6
 
 
 
da48dbe
 
 
 
fb140f6
da48dbe
fb140f6
 
 
487ee6d
 
fb140f6
 
487ee6d
 
 
 
da48dbe
 
 
 
 
 
c1ffcb6
487ee6d
 
c1ffcb6
fb140f6
c1ffcb6
487ee6d
fb140f6
 
da48dbe
 
 
 
 
 
 
 
fb140f6
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
 
da48dbe
 
 
 
 
 
 
fb140f6
 
 
 
 
 
 
 
 
da48dbe
 
 
 
 
 
 
 
fb140f6
487ee6d
 
fb140f6
da48dbe
 
 
 
 
fb140f6
 
 
 
 
 
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
da48dbe
fb140f6
 
 
 
 
 
 
 
 
 
da48dbe
 
fb140f6
da48dbe
 
e0ba903
da48dbe
 
fb140f6
 
da48dbe
 
 
 
fb140f6
da48dbe
 
 
 
 
 
 
 
 
 
487ee6d
 
da48dbe
 
 
 
 
 
 
 
 
 
487ee6d
 
 
 
 
fb140f6
 
 
 
 
 
 
 
 
 
da48dbe
 
 
 
 
fb140f6
 
 
 
 
da48dbe
 
 
fb140f6
 
 
 
 
 
 
 
da48dbe
 
 
fb140f6
 
 
 
da48dbe
 
 
 
 
 
 
fb140f6
 
 
 
 
 
 
 
 
da48dbe
 
fb140f6
 
 
 
 
da48dbe
fb140f6
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
da48dbe
fb140f6
 
 
 
 
 
 
 
 
da48dbe
fb140f6
da48dbe
fb140f6
 
da48dbe
fb140f6
 
da48dbe
fb140f6
da48dbe
fb140f6
da48dbe
 
fb140f6
da48dbe
fb140f6
da48dbe
fb140f6
 
 
 
 
 
 
 
da48dbe
fb140f6
 
 
 
 
 
 
da48dbe
 
fb140f6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
import os

os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1"
import cv2
import mediapipe as mp
import numpy as np
import torch
import torch.nn.functional as F
from kornia.geometry.transform import get_affine_matrix2d, warp_affine
from PIL import Image
from rembg import remove
from rembg.session_factory import new_session
from torchvision import transforms

from lib.pymafx.core import constants


def transform_to_tensor(res, mean=None, std=None, is_tensor=False):
    all_ops = []
    if res is not None:
        all_ops.append(transforms.Resize(size=res))
    if not is_tensor:
        all_ops.append(transforms.ToTensor())
    if mean is not None and std is not None:
        all_ops.append(transforms.Normalize(mean=mean, std=std))
    return transforms.Compose(all_ops)


def get_affine_matrix_wh(w1, h1, w2, h2):

    transl = torch.tensor([(w2 - w1) / 2.0, (h2 - h1) / 2.0]).unsqueeze(0)
    center = torch.tensor([w1 / 2.0, h1 / 2.0]).unsqueeze(0)
    scale = torch.min(torch.tensor([w2 / w1, h2 / h1])).repeat(2).unsqueeze(0)
    M = get_affine_matrix2d(transl, center, scale, angle=torch.tensor([0.]))

    return M


def get_affine_matrix_box(boxes, w2, h2):

    # boxes [left, top, right, bottom]
    width = boxes[:, 2] - boxes[:, 0]    #(N,)
    height = boxes[:, 3] - boxes[:, 1]    #(N,)
    center = torch.tensor([(boxes[:, 0] + boxes[:, 2]) / 2.0,
                           (boxes[:, 1] + boxes[:, 3]) / 2.0]).T    #(N,2)
    scale = torch.min(torch.tensor([w2 / width, h2 / height]),
                      dim=0)[0].unsqueeze(1).repeat(1, 2) * 0.9    #(N,2)
    transl = torch.cat([w2 / 2.0 - center[:, 0:1], h2 / 2.0 - center[:, 1:2]], dim=1)    #(N,2)
    M = get_affine_matrix2d(transl, center, scale, angle=torch.tensor([
        0.,
    ] * transl.shape[0]))

    return M


def load_img(img_file):

    if img_file.endswith("exr"):
        img = cv2.imread(img_file, cv2.IMREAD_ANYCOLOR | cv2.IMREAD_ANYDEPTH)
    else:
        img = cv2.imread(img_file, cv2.IMREAD_UNCHANGED)

    # considering non 8-bit image
    if img.dtype != np.uint8:
        img = cv2.normalize(img, None, 0, 255, cv2.NORM_MINMAX, dtype=cv2.CV_8U)

    if len(img.shape) == 2:
        img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)

    if not img_file.endswith("png"):
        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    else:
        img = cv2.cvtColor(img, cv2.COLOR_RGBA2BGR)

    return torch.tensor(img).permute(2, 0, 1).unsqueeze(0).float(), img.shape[:2]


def get_keypoints(image):
    def collect_xyv(x, body=True):
        lmk = x.landmark
        all_lmks = []
        for i in range(len(lmk)):
            visibility = lmk[i].visibility if body else 1.0
            all_lmks.append(torch.Tensor([lmk[i].x, lmk[i].y, lmk[i].z, visibility]))
        return torch.stack(all_lmks).view(-1, 4)

    mp_holistic = mp.solutions.holistic

    with mp_holistic.Holistic(
        static_image_mode=True,
        model_complexity=2,
    ) as holistic:
        results = holistic.process(image)

    fake_kps = torch.zeros(33, 4)

    result = {}
    result["body"] = collect_xyv(results.pose_landmarks) if results.pose_landmarks else fake_kps
    result["lhand"] = collect_xyv(
        results.left_hand_landmarks, False
    ) if results.left_hand_landmarks else fake_kps
    result["rhand"] = collect_xyv(
        results.right_hand_landmarks, False
    ) if results.right_hand_landmarks else fake_kps
    result["face"] = collect_xyv(
        results.face_landmarks, False
    ) if results.face_landmarks else fake_kps

    return result


def get_pymafx(image, landmarks):

    # image [3,512,512]

    item = {
        'img_body': F.interpolate(image.unsqueeze(0), size=224, mode='bicubic',
                                  align_corners=True)[0]
    }

    for part in ['lhand', 'rhand', 'face']:
        kp2d = landmarks[part]
        kp2d_valid = kp2d[kp2d[:, 3] > 0.]
        if len(kp2d_valid) > 0:
            bbox = [
                min(kp2d_valid[:, 0]),
                min(kp2d_valid[:, 1]),
                max(kp2d_valid[:, 0]),
                max(kp2d_valid[:, 1])
            ]
            center_part = [(bbox[2] + bbox[0]) / 2., (bbox[3] + bbox[1]) / 2.]
            scale_part = 2. * max(bbox[2] - bbox[0], bbox[3] - bbox[1]) / 2

        # handle invalid part keypoints
        if len(kp2d_valid) < 1 or scale_part < 0.01:
            center_part = [0, 0]
            scale_part = 0.5
            kp2d[:, 3] = 0

        center_part = torch.tensor(center_part).float()

        theta_part = torch.zeros(1, 2, 3)
        theta_part[:, 0, 0] = scale_part
        theta_part[:, 1, 1] = scale_part
        theta_part[:, :, -1] = center_part

        grid = F.affine_grid(theta_part, torch.Size([1, 3, 224, 224]), align_corners=False)
        img_part = F.grid_sample(image.unsqueeze(0), grid, align_corners=False).squeeze(0).float()

        item[f'img_{part}'] = img_part

        theta_i_inv = torch.zeros_like(theta_part)
        theta_i_inv[:, 0, 0] = 1. / theta_part[:, 0, 0]
        theta_i_inv[:, 1, 1] = 1. / theta_part[:, 1, 1]
        theta_i_inv[:, :, -1] = -theta_part[:, :, -1] / theta_part[:, 0, 0].unsqueeze(-1)
        item[f'{part}_theta_inv'] = theta_i_inv[0]

    return item


def remove_floats(mask):

    # 1. find all the contours
    # 2. fillPoly "True" for the largest one
    # 3. fillPoly "False" for its childrens

    new_mask = np.zeros(mask.shape)
    cnts, hier = cv2.findContours(mask.astype(np.uint8), cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
    cnt_index = sorted(range(len(cnts)), key=lambda k: cv2.contourArea(cnts[k]), reverse=True)
    body_cnt = cnts[cnt_index[0]]
    childs_cnt_idx = np.where(np.array(hier)[0, :, -1] == cnt_index[0])[0]
    childs_cnt = [cnts[idx] for idx in childs_cnt_idx]
    cv2.fillPoly(new_mask, [body_cnt], 1)
    cv2.fillPoly(new_mask, childs_cnt, 0)

    return new_mask


def process_image(img_file, hps_type, single, input_res, detector):

    img_raw, (in_height, in_width) = load_img(img_file)
    tgt_res = input_res * 2
    M_square = get_affine_matrix_wh(in_width, in_height, tgt_res, tgt_res)
    img_square = warp_affine(
        img_raw,
        M_square[:, :2], (tgt_res, ) * 2,
        mode='bilinear',
        padding_mode='zeros',
        align_corners=True
    )

    # detection for bbox
    predictions = detector(img_square / 255.)[0]

    if single:
        top_score = max(predictions["scores"][predictions["labels"] == 1])
        human_ids = torch.where(predictions["scores"] == top_score)[0]
    else:
        human_ids = torch.logical_and(predictions["labels"] == 1,
                                      predictions["scores"] > 0.9).nonzero().squeeze(1)

    boxes = predictions["boxes"][human_ids, :].detach().cpu().numpy()
    masks = predictions["masks"][human_ids, :, :].permute(0, 2, 3, 1).detach().cpu().numpy()

    M_crop = get_affine_matrix_box(boxes, input_res, input_res)

    img_icon_lst = []
    img_crop_lst = []
    img_hps_lst = []
    img_mask_lst = []
    landmark_lst = []
    hands_visibility_lst = []
    img_pymafx_lst = []

    uncrop_param = {
        "ori_shape": [in_height, in_width], "box_shape": [input_res, input_res], "square_shape":
        [tgt_res, tgt_res], "M_square": M_square, "M_crop": M_crop
    }

    for idx in range(len(boxes)):

        # mask out the pixels of others
        if len(masks) > 1:
            mask_detection = (masks[np.arange(len(masks)) != idx]).max(axis=0)
        else:
            mask_detection = masks[0] * 0.

        img_square_rgba = torch.cat([
            img_square.squeeze(0).permute(1, 2, 0),
            torch.tensor(mask_detection < 0.4) * 255
        ],
                                    dim=2)

        img_crop = warp_affine(
            img_square_rgba.unsqueeze(0).permute(0, 3, 1, 2),
            M_crop[idx:idx + 1, :2], (input_res, ) * 2,
            mode='bilinear',
            padding_mode='zeros',
            align_corners=True
        ).squeeze(0).permute(1, 2, 0).numpy().astype(np.uint8)

        # get accurate person segmentation mask
        img_rembg = remove(img_crop, post_process_mask=True, session=new_session("u2net"))
        img_mask = remove_floats(img_rembg[:, :, [3]])

        mean_icon = std_icon = (0.5, 0.5, 0.5)
        img_np = (img_rembg[..., :3] * img_mask).astype(np.uint8)
        img_icon = transform_to_tensor(512, mean_icon, std_icon)(
            Image.fromarray(img_np)
        ) * torch.tensor(img_mask).permute(2, 0, 1)
        img_hps = transform_to_tensor(224, constants.IMG_NORM_MEAN,
                                      constants.IMG_NORM_STD)(Image.fromarray(img_np))

        landmarks = get_keypoints(img_np)

        # get hands visibility
        hands_visibility = [True, True]
        if landmarks['lhand'][:, -1].mean() == 0.:
            hands_visibility[0] = False
        if landmarks['rhand'][:, -1].mean() == 0.:
            hands_visibility[1] = False
        hands_visibility_lst.append(hands_visibility)

        if hps_type == 'pymafx':
            img_pymafx_lst.append(
                get_pymafx(
                    transform_to_tensor(512, constants.IMG_NORM_MEAN,
                                        constants.IMG_NORM_STD)(Image.fromarray(img_np)), landmarks
                )
            )

        img_crop_lst.append(torch.tensor(img_crop).permute(2, 0, 1) / 255.0)
        img_icon_lst.append(img_icon)
        img_hps_lst.append(img_hps)
        img_mask_lst.append(torch.tensor(img_mask[..., 0]))
        landmark_lst.append(landmarks['body'])

    # required image tensors / arrays

    # img_icon  (tensor): (-1, 1),          [3,512,512]
    # img_hps   (tensor): (-2.11, 2.44),    [3,224,224]

    # img_np    (array): (0, 255),          [512,512,3]
    # img_rembg (array): (0, 255),          [512,512,4]
    # img_mask  (array): (0, 1),            [512,512,1]
    # img_crop  (array): (0, 255),          [512,512,4]

    return_dict = {
        "img_icon": torch.stack(img_icon_lst).float(),    #[N, 3, res, res]
        "img_crop": torch.stack(img_crop_lst).float(),    #[N, 4, res, res]               
        "img_hps": torch.stack(img_hps_lst).float(),    #[N, 3, res, res]
        "img_raw": img_raw,    #[1, 3, H, W]
        "img_mask": torch.stack(img_mask_lst).float(),    #[N, res, res]
        "uncrop_param": uncrop_param,
        "landmark": torch.stack(landmark_lst),    #[N, 33, 4]
        "hands_visibility": hands_visibility_lst,
    }

    img_pymafx = {}

    if len(img_pymafx_lst) > 0:
        for idx in range(len(img_pymafx_lst)):
            for key in img_pymafx_lst[idx].keys():
                if key not in img_pymafx.keys():
                    img_pymafx[key] = [img_pymafx_lst[idx][key]]
                else:
                    img_pymafx[key] += [img_pymafx_lst[idx][key]]

        for key in img_pymafx.keys():
            img_pymafx[key] = torch.stack(img_pymafx[key]).float()

        return_dict.update({"img_pymafx": img_pymafx})

    return return_dict


def blend_rgb_norm(norms, data):

    # norms [N, 3, res, res]
    masks = (norms.sum(dim=1) != norms[0, :, 0, 0].sum()).float().unsqueeze(1)
    norm_mask = F.interpolate(
        torch.cat([norms, masks], dim=1).detach(),
        size=data["uncrop_param"]["box_shape"],
        mode="bilinear",
        align_corners=False
    )
    final = data["img_raw"].type_as(norm_mask)

    for idx in range(len(norms)):

        norm_pred = (norm_mask[idx:idx + 1, :3, :, :] + 1.0) * 255.0 / 2.0
        mask_pred = norm_mask[idx:idx + 1, 3:4, :, :].repeat(1, 3, 1, 1)

        norm_ori = unwrap(norm_pred, data["uncrop_param"], idx)
        mask_ori = unwrap(mask_pred, data["uncrop_param"], idx)

        final = final * (1.0 - mask_ori) + norm_ori * mask_ori

    return final.detach().cpu()


def unwrap(image, uncrop_param, idx):

    device = image.device

    img_square = warp_affine(
        image,
        torch.inverse(uncrop_param["M_crop"])[idx:idx + 1, :2].to(device),
        uncrop_param["square_shape"],
        mode='bilinear',
        padding_mode='zeros',
        align_corners=True
    )

    img_ori = warp_affine(
        img_square,
        torch.inverse(uncrop_param["M_square"])[:, :2].to(device),
        uncrop_param["ori_shape"],
        mode='bilinear',
        padding_mode='zeros',
        align_corners=True
    )

    return img_ori