Spaces:
Runtime error
Runtime error
File size: 5,433 Bytes
da48dbe 487ee6d da48dbe 487ee6d da48dbe fb140f6 da48dbe fb140f6 da48dbe 487ee6d da48dbe 487ee6d da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe 487ee6d fb140f6 da48dbe fb140f6 da48dbe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
# -*- coding: utf-8 -*-
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: [email protected]
import os.path as osp
import kornia
import numpy as np
import torchvision.transforms as transforms
from PIL import Image
from termcolor import colored
class NormalDataset:
def __init__(self, cfg, split="train"):
self.split = split
self.root = cfg.root
self.bsize = cfg.batch_size
self.opt = cfg.dataset
self.datasets = self.opt.types
self.input_size = self.opt.input_size
self.scales = self.opt.scales
# input data types and dimensions
self.in_nml = [item[0] for item in cfg.net.in_nml]
self.in_nml_dim = [item[1] for item in cfg.net.in_nml]
self.in_total = self.in_nml + ["normal_F", "normal_B"]
self.in_total_dim = self.in_nml_dim + [3, 3]
if self.split != "train":
self.rotations = range(0, 360, 120)
else:
self.rotations = np.arange(0, 360, 360 // self.opt.rotation_num).astype(np.int)
self.datasets_dict = {}
for dataset_id, dataset in enumerate(self.datasets):
dataset_dir = osp.join(self.root, dataset)
self.datasets_dict[dataset] = {
"subjects": np.loadtxt(osp.join(dataset_dir, "all.txt"), dtype=str),
"scale": self.scales[dataset_id],
}
self.subject_list = self.get_subject_list(split)
# PIL to tensor
self.image_to_tensor = transforms.Compose([
transforms.Resize(self.input_size),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
])
# PIL to tensor
self.mask_to_tensor = transforms.Compose([
transforms.Resize(self.input_size),
transforms.ToTensor(),
transforms.Normalize((0.0, ), (1.0, )),
])
def get_subject_list(self, split):
subject_list = []
for dataset in self.datasets:
split_txt = osp.join(self.root, dataset, f"{split}.txt")
if osp.exists(split_txt) and osp.getsize(split_txt) > 0:
print(f"load from {split_txt}")
subject_list += np.loadtxt(split_txt, dtype=str).tolist()
if self.split != "test":
subject_list += subject_list[:self.bsize - len(subject_list) % self.bsize]
print(colored(f"total: {len(subject_list)}", "yellow"))
bug_list = sorted(np.loadtxt(osp.join(self.root, 'bug.txt'), dtype=str).tolist())
subject_list = [subject for subject in subject_list if (subject not in bug_list)]
# subject_list = ["thuman2/0008"]
return subject_list
def __len__(self):
return len(self.subject_list) * len(self.rotations)
def __getitem__(self, index):
rid = index % len(self.rotations)
mid = index // len(self.rotations)
rotation = self.rotations[rid]
subject = self.subject_list[mid].split("/")[1]
dataset = self.subject_list[mid].split("/")[0]
render_folder = "/".join([dataset + f"_{self.opt.rotation_num}views", subject])
if not osp.exists(osp.join(self.root, render_folder)):
render_folder = "/".join([dataset + f"_36views", subject])
# setup paths
data_dict = {
"dataset": dataset,
"subject": subject,
"rotation": rotation,
"scale": self.datasets_dict[dataset]["scale"],
"image_path": osp.join(self.root, render_folder, "render", f"{rotation:03d}.png"),
}
# image/normal/depth loader
for name, channel in zip(self.in_total, self.in_total_dim):
if f"{name}_path" not in data_dict.keys():
data_dict.update({
f"{name}_path":
osp.join(self.root, render_folder, name, f"{rotation:03d}.png")
})
data_dict.update({
name:
self.imagepath2tensor(data_dict[f"{name}_path"], channel, inv=False, erasing=False)
})
path_keys = [key for key in data_dict.keys() if "_path" in key or "_dir" in key]
for key in path_keys:
del data_dict[key]
return data_dict
def imagepath2tensor(self, path, channel=3, inv=False, erasing=False):
rgba = Image.open(path).convert("RGBA")
mask = rgba.split()[-1]
image = rgba.convert("RGB")
image = self.image_to_tensor(image)
mask = self.mask_to_tensor(mask)
# simulate occlusion
if erasing:
mask = kornia.augmentation.RandomErasing(
p=0.2, scale=(0.01, 0.2), ratio=(0.3, 3.3), keepdim=True
)(mask)
image = (image * mask)[:channel]
return (image * (0.5 - inv) * 2.0).float()
|