File size: 5,433 Bytes
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
487ee6d
 
da48dbe
487ee6d
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
da48dbe
 
 
 
 
 
 
 
fb140f6
da48dbe
 
 
 
 
 
487ee6d
 
 
 
 
da48dbe
 
487ee6d
 
 
 
 
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
da48dbe
 
fb140f6
da48dbe
fb140f6
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
da48dbe
 
 
 
 
 
fb140f6
 
 
 
 
da48dbe
 
 
 
 
 
487ee6d
 
 
 
 
 
 
 
 
fb140f6
 
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
 
 
da48dbe
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
# -*- coding: utf-8 -*-

# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: [email protected]

import os.path as osp

import kornia
import numpy as np
import torchvision.transforms as transforms
from PIL import Image
from termcolor import colored


class NormalDataset:
    def __init__(self, cfg, split="train"):

        self.split = split
        self.root = cfg.root
        self.bsize = cfg.batch_size

        self.opt = cfg.dataset
        self.datasets = self.opt.types
        self.input_size = self.opt.input_size
        self.scales = self.opt.scales

        # input data types and dimensions
        self.in_nml = [item[0] for item in cfg.net.in_nml]
        self.in_nml_dim = [item[1] for item in cfg.net.in_nml]
        self.in_total = self.in_nml + ["normal_F", "normal_B"]
        self.in_total_dim = self.in_nml_dim + [3, 3]

        if self.split != "train":
            self.rotations = range(0, 360, 120)
        else:
            self.rotations = np.arange(0, 360, 360 // self.opt.rotation_num).astype(np.int)

        self.datasets_dict = {}

        for dataset_id, dataset in enumerate(self.datasets):

            dataset_dir = osp.join(self.root, dataset)

            self.datasets_dict[dataset] = {
                "subjects": np.loadtxt(osp.join(dataset_dir, "all.txt"), dtype=str),
                "scale": self.scales[dataset_id],
            }

        self.subject_list = self.get_subject_list(split)

        # PIL to tensor
        self.image_to_tensor = transforms.Compose([
            transforms.Resize(self.input_size),
            transforms.ToTensor(),
            transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
        ])

        # PIL to tensor
        self.mask_to_tensor = transforms.Compose([
            transforms.Resize(self.input_size),
            transforms.ToTensor(),
            transforms.Normalize((0.0, ), (1.0, )),
        ])

    def get_subject_list(self, split):

        subject_list = []

        for dataset in self.datasets:

            split_txt = osp.join(self.root, dataset, f"{split}.txt")

            if osp.exists(split_txt) and osp.getsize(split_txt) > 0:
                print(f"load from {split_txt}")
                subject_list += np.loadtxt(split_txt, dtype=str).tolist()

        if self.split != "test":
            subject_list += subject_list[:self.bsize - len(subject_list) % self.bsize]
            print(colored(f"total: {len(subject_list)}", "yellow"))

        bug_list = sorted(np.loadtxt(osp.join(self.root, 'bug.txt'), dtype=str).tolist())

        subject_list = [subject for subject in subject_list if (subject not in bug_list)]

        # subject_list = ["thuman2/0008"]
        return subject_list

    def __len__(self):
        return len(self.subject_list) * len(self.rotations)

    def __getitem__(self, index):

        rid = index % len(self.rotations)
        mid = index // len(self.rotations)

        rotation = self.rotations[rid]
        subject = self.subject_list[mid].split("/")[1]
        dataset = self.subject_list[mid].split("/")[0]
        render_folder = "/".join([dataset + f"_{self.opt.rotation_num}views", subject])

        if not osp.exists(osp.join(self.root, render_folder)):
            render_folder = "/".join([dataset + f"_36views", subject])

        # setup paths
        data_dict = {
            "dataset": dataset,
            "subject": subject,
            "rotation": rotation,
            "scale": self.datasets_dict[dataset]["scale"],
            "image_path": osp.join(self.root, render_folder, "render", f"{rotation:03d}.png"),
        }

        # image/normal/depth loader
        for name, channel in zip(self.in_total, self.in_total_dim):

            if f"{name}_path" not in data_dict.keys():
                data_dict.update({
                    f"{name}_path":
                    osp.join(self.root, render_folder, name, f"{rotation:03d}.png")
                })

            data_dict.update({
                name:
                self.imagepath2tensor(data_dict[f"{name}_path"], channel, inv=False, erasing=False)
            })

        path_keys = [key for key in data_dict.keys() if "_path" in key or "_dir" in key]

        for key in path_keys:
            del data_dict[key]

        return data_dict

    def imagepath2tensor(self, path, channel=3, inv=False, erasing=False):

        rgba = Image.open(path).convert("RGBA")
        mask = rgba.split()[-1]

        image = rgba.convert("RGB")
        image = self.image_to_tensor(image)
        mask = self.mask_to_tensor(mask)

        # simulate occlusion
        if erasing:
            mask = kornia.augmentation.RandomErasing(
                p=0.2, scale=(0.01, 0.2), ratio=(0.3, 3.3), keepdim=True
            )(mask)
        image = (image * mask)[:channel]

        return (image * (0.5 - inv) * 2.0).float()