Spaces:
Runtime error
Runtime error
File size: 7,557 Bytes
da48dbe 487ee6d da48dbe 487ee6d da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
from __future__ import division, print_function
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import voxelize_cuda
from torch.autograd import Function
class VoxelizationFunction(Function):
"""
Definition of differentiable voxelization function
Currently implemented only for cuda Tensors
"""
@staticmethod
def forward(
ctx,
smpl_vertices,
smpl_face_center,
smpl_face_normal,
smpl_vertex_code,
smpl_face_code,
smpl_tetrahedrons,
volume_res,
sigma,
smooth_kernel_size,
):
"""
forward pass
Output format: (batch_size, z_dims, y_dims, x_dims, channel_num)
"""
assert smpl_vertices.size()[1] == smpl_vertex_code.size()[1]
assert smpl_face_center.size()[1] == smpl_face_normal.size()[1]
assert smpl_face_center.size()[1] == smpl_face_code.size()[1]
ctx.batch_size = smpl_vertices.size()[0]
ctx.volume_res = volume_res
ctx.sigma = sigma
ctx.smooth_kernel_size = smooth_kernel_size
ctx.smpl_vertex_num = smpl_vertices.size()[1]
ctx.device = smpl_vertices.device
smpl_vertices = smpl_vertices.contiguous()
smpl_face_center = smpl_face_center.contiguous()
smpl_face_normal = smpl_face_normal.contiguous()
smpl_vertex_code = smpl_vertex_code.contiguous()
smpl_face_code = smpl_face_code.contiguous()
smpl_tetrahedrons = smpl_tetrahedrons.contiguous()
occ_volume = torch.cuda.FloatTensor(
ctx.batch_size, ctx.volume_res, ctx.volume_res, ctx.volume_res
).fill_(0.0)
semantic_volume = torch.cuda.FloatTensor(
ctx.batch_size, ctx.volume_res, ctx.volume_res, ctx.volume_res, 3
).fill_(0.0)
weight_sum_volume = torch.cuda.FloatTensor(
ctx.batch_size, ctx.volume_res, ctx.volume_res, ctx.volume_res
).fill_(1e-3)
# occ_volume [B, volume_res, volume_res, volume_res]
# semantic_volume [B, volume_res, volume_res, volume_res, 3]
# weight_sum_volume [B, volume_res, volume_res, volume_res]
(
occ_volume,
semantic_volume,
weight_sum_volume,
) = voxelize_cuda.forward_semantic_voxelization(
smpl_vertices,
smpl_vertex_code,
smpl_tetrahedrons,
occ_volume,
semantic_volume,
weight_sum_volume,
sigma,
)
return semantic_volume
class Voxelization(nn.Module):
"""
Wrapper around the autograd function VoxelizationFunction
"""
def __init__(
self,
smpl_vertex_code,
smpl_face_code,
smpl_face_indices,
smpl_tetraderon_indices,
volume_res,
sigma,
smooth_kernel_size,
batch_size,
):
super(Voxelization, self).__init__()
assert len(smpl_face_indices.shape) == 2
assert len(smpl_tetraderon_indices.shape) == 2
assert smpl_face_indices.shape[1] == 3
assert smpl_tetraderon_indices.shape[1] == 4
self.volume_res = volume_res
self.sigma = sigma
self.smooth_kernel_size = smooth_kernel_size
self.batch_size = batch_size
self.device = None
self.smpl_vertex_code = smpl_vertex_code
self.smpl_face_code = smpl_face_code
self.smpl_face_indices = smpl_face_indices
self.smpl_tetraderon_indices = smpl_tetraderon_indices
def update_param(self, voxel_faces):
self.device = voxel_faces.device
self.smpl_tetraderon_indices = voxel_faces
smpl_vertex_code_batch = torch.tile(self.smpl_vertex_code, (self.batch_size, 1, 1))
smpl_face_code_batch = torch.tile(self.smpl_face_code, (self.batch_size, 1, 1))
smpl_face_indices_batch = torch.tile(self.smpl_face_indices, (self.batch_size, 1, 1))
smpl_vertex_code_batch = (smpl_vertex_code_batch.contiguous().to(self.device))
smpl_face_code_batch = (smpl_face_code_batch.contiguous().to(self.device))
smpl_face_indices_batch = (smpl_face_indices_batch.contiguous().to(self.device))
smpl_tetraderon_indices_batch = (self.smpl_tetraderon_indices.contiguous().to(self.device))
self.register_buffer("smpl_vertex_code_batch", smpl_vertex_code_batch)
self.register_buffer("smpl_face_code_batch", smpl_face_code_batch)
self.register_buffer("smpl_face_indices_batch", smpl_face_indices_batch)
self.register_buffer("smpl_tetraderon_indices_batch", smpl_tetraderon_indices_batch)
def forward(self, smpl_vertices):
"""
Generate semantic volumes from SMPL vertices
"""
self.check_input(smpl_vertices)
smpl_faces = self.vertices_to_faces(smpl_vertices)
smpl_tetrahedrons = self.vertices_to_tetrahedrons(smpl_vertices)
smpl_face_center = self.calc_face_centers(smpl_faces)
smpl_face_normal = self.calc_face_normals(smpl_faces)
smpl_surface_vertex_num = self.smpl_vertex_code_batch.size()[1]
smpl_vertices_surface = smpl_vertices[:, :smpl_surface_vertex_num, :]
vol = VoxelizationFunction.apply(
smpl_vertices_surface,
smpl_face_center,
smpl_face_normal,
self.smpl_vertex_code_batch,
self.smpl_face_code_batch,
smpl_tetrahedrons,
self.volume_res,
self.sigma,
self.smooth_kernel_size,
)
return vol.permute((0, 4, 1, 2, 3)) # (bzyxc --> bcdhw)
def vertices_to_faces(self, vertices):
assert vertices.ndimension() == 3
bs, nv = vertices.shape[:2]
face = (
self.smpl_face_indices_batch +
(torch.arange(bs, dtype=torch.int32).to(self.device) * nv)[:, None, None]
)
vertices_ = vertices.reshape((bs * nv, 3))
return vertices_[face.long()]
def vertices_to_tetrahedrons(self, vertices):
assert vertices.ndimension() == 3
bs, nv = vertices.shape[:2]
tets = (
self.smpl_tetraderon_indices_batch +
(torch.arange(bs, dtype=torch.int32).to(self.device) * nv)[:, None, None]
)
vertices_ = vertices.reshape((bs * nv, 3))
return vertices_[tets.long()]
def calc_face_centers(self, face_verts):
assert len(face_verts.shape) == 4
assert face_verts.shape[2] == 3
assert face_verts.shape[3] == 3
bs, nf = face_verts.shape[:2]
face_centers = (
face_verts[:, :, 0, :] + face_verts[:, :, 1, :] + face_verts[:, :, 2, :]
) / 3.0
face_centers = face_centers.reshape((bs, nf, 3))
return face_centers
def calc_face_normals(self, face_verts):
assert len(face_verts.shape) == 4
assert face_verts.shape[2] == 3
assert face_verts.shape[3] == 3
bs, nf = face_verts.shape[:2]
face_verts = face_verts.reshape((bs * nf, 3, 3))
v10 = face_verts[:, 0] - face_verts[:, 1]
v12 = face_verts[:, 2] - face_verts[:, 1]
normals = F.normalize(torch.cross(v10, v12), eps=1e-5)
normals = normals.reshape((bs, nf, 3))
return normals
def check_input(self, x):
if x.device == "cpu":
raise TypeError("Voxelization module supports only cuda tensors")
if x.type() != "torch.cuda.FloatTensor":
raise TypeError("Voxelization module supports only float32 tensors")
|