Spaces:
Runtime error
Runtime error
import numpy as np | |
import trimesh | |
import torch | |
import argparse | |
import os.path as osp | |
import lib.smplx as smplx | |
from pytorch3d.ops import SubdivideMeshes | |
from pytorch3d.structures import Meshes | |
from lib.smplx.lbs import general_lbs | |
from lib.dataset.mesh_util import keep_largest, poisson | |
from scipy.spatial import cKDTree | |
from lib.dataset.mesh_util import SMPLX | |
from lib.common.local_affine import register | |
# loading cfg file | |
parser = argparse.ArgumentParser() | |
parser.add_argument("-n", "--name", type=str, default="") | |
parser.add_argument("-g", "--gpu", type=int, default=0) | |
args = parser.parse_args() | |
smplx_container = SMPLX() | |
device = torch.device(f"cuda:{args.gpu}") | |
prefix = f"./results/econ/obj/{args.name}" | |
smpl_path = f"{prefix}_smpl_00.npy" | |
econ_path = f"{prefix}_0_full.obj" | |
smplx_param = np.load(smpl_path, allow_pickle=True).item() | |
econ_obj = trimesh.load(econ_path) | |
econ_obj.vertices *= np.array([1.0, -1.0, -1.0]) | |
econ_obj.vertices /= smplx_param["scale"].cpu().numpy() | |
econ_obj.vertices -= smplx_param["transl"].cpu().numpy() | |
for key in smplx_param.keys(): | |
smplx_param[key] = smplx_param[key].cpu().view(1, -1) | |
smpl_model = smplx.create( | |
smplx_container.model_dir, | |
model_type="smplx", | |
gender="neutral", | |
age="adult", | |
use_face_contour=False, | |
use_pca=False, | |
num_betas=200, | |
num_expression_coeffs=50, | |
ext='pkl' | |
) | |
smpl_out_lst = [] | |
for pose_type in ["t-pose", "da-pose", "pose"]: | |
smpl_out_lst.append( | |
smpl_model( | |
body_pose=smplx_param["body_pose"], | |
global_orient=smplx_param["global_orient"], | |
betas=smplx_param["betas"], | |
expression=smplx_param["expression"], | |
jaw_pose=smplx_param["jaw_pose"], | |
left_hand_pose=smplx_param["left_hand_pose"], | |
right_hand_pose=smplx_param["right_hand_pose"], | |
return_verts=True, | |
return_full_pose=True, | |
return_joint_transformation=True, | |
return_vertex_transformation=True, | |
pose_type=pose_type | |
) | |
) | |
smpl_verts = smpl_out_lst[2].vertices.detach()[0] | |
smpl_tree = cKDTree(smpl_verts.cpu().numpy()) | |
dist, idx = smpl_tree.query(econ_obj.vertices, k=5) | |
if not osp.exists(f"{prefix}_econ_da.obj") or not osp.exists(f"{prefix}_smpl_da.obj"): | |
# t-pose for ECON | |
econ_verts = torch.tensor(econ_obj.vertices).float() | |
rot_mat_t = smpl_out_lst[2].vertex_transformation.detach()[0][idx[:, 0]] | |
homo_coord = torch.ones_like(econ_verts)[..., :1] | |
econ_cano_verts = torch.inverse(rot_mat_t) @ torch.cat([econ_verts, homo_coord], | |
dim=1).unsqueeze(-1) | |
econ_cano_verts = econ_cano_verts[:, :3, 0].cpu() | |
econ_cano = trimesh.Trimesh(econ_cano_verts, econ_obj.faces) | |
# da-pose for ECON | |
rot_mat_da = smpl_out_lst[1].vertex_transformation.detach()[0][idx[:, 0]] | |
econ_da_verts = rot_mat_da @ torch.cat([econ_cano_verts, homo_coord], dim=1).unsqueeze(-1) | |
econ_da = trimesh.Trimesh(econ_da_verts[:, :3, 0].cpu(), econ_obj.faces) | |
# da-pose for SMPL-X | |
smpl_da = trimesh.Trimesh( | |
smpl_out_lst[1].vertices.detach()[0], smpl_model.faces, maintain_orders=True, process=False | |
) | |
smpl_da.export(f"{prefix}_smpl_da.obj") | |
# remove hands from ECON for next registeration | |
econ_da_body = econ_da.copy() | |
mano_mask = ~np.isin(idx[:, 0], smplx_container.smplx_mano_vid) | |
econ_da_body.update_faces(mano_mask[econ_da.faces].all(axis=1)) | |
econ_da_body.remove_unreferenced_vertices() | |
econ_da_body = keep_largest(econ_da_body) | |
# remove SMPL-X hand and face | |
register_mask = ~np.isin( | |
np.arange(smpl_da.vertices.shape[0]), | |
np.concatenate([smplx_container.smplx_mano_vid, smplx_container.smplx_front_flame_vid]) | |
) | |
register_mask *= ~smplx_container.eyeball_vertex_mask.bool().numpy() | |
smpl_da_body = smpl_da.copy() | |
smpl_da_body.update_faces(register_mask[smpl_da.faces].all(axis=1)) | |
smpl_da_body.remove_unreferenced_vertices() | |
smpl_da_body = keep_largest(smpl_da_body) | |
# upsample the smpl_da_body and do registeration | |
smpl_da_body = Meshes( | |
verts=[torch.tensor(smpl_da_body.vertices).float()], | |
faces=[torch.tensor(smpl_da_body.faces).long()], | |
).to(device) | |
sm = SubdivideMeshes(smpl_da_body) | |
smpl_da_body = register(econ_da_body, sm(smpl_da_body), device) | |
# remove over-streched+hand faces from ECON | |
econ_da_body = econ_da.copy() | |
edge_before = np.sqrt( | |
((econ_obj.vertices[econ_cano.edges[:, 0]] - | |
econ_obj.vertices[econ_cano.edges[:, 1]])**2).sum(axis=1) | |
) | |
edge_after = np.sqrt( | |
((econ_da.vertices[econ_cano.edges[:, 0]] - | |
econ_da.vertices[econ_cano.edges[:, 1]])**2).sum(axis=1) | |
) | |
edge_diff = edge_after / edge_before.clip(1e-2) | |
streched_mask = np.unique(econ_cano.edges[edge_diff > 6]) | |
mano_mask = ~np.isin(idx[:, 0], smplx_container.smplx_mano_vid) | |
mano_mask[streched_mask] = False | |
econ_da_body.update_faces(mano_mask[econ_cano.faces].all(axis=1)) | |
econ_da_body.remove_unreferenced_vertices() | |
# stitch the registered SMPL-X body and floating hands to ECON | |
econ_da_tree = cKDTree(econ_da.vertices) | |
dist, idx = econ_da_tree.query(smpl_da_body.vertices, k=1) | |
smpl_da_body.update_faces((dist > 0.02)[smpl_da_body.faces].all(axis=1)) | |
smpl_da_body.remove_unreferenced_vertices() | |
smpl_hand = smpl_da.copy() | |
smpl_hand.update_faces(smplx_container.smplx_mano_vertex_mask.numpy()[smpl_hand.faces].all(axis=1)) | |
smpl_hand.remove_unreferenced_vertices() | |
econ_da = sum([smpl_hand, smpl_da_body, econ_da_body]) | |
econ_da = poisson(econ_da, f"{prefix}_econ_da.obj", depth=10, decimation=False) | |
else: | |
econ_da = trimesh.load(f"{prefix}_econ_da.obj") | |
smpl_da = trimesh.load(f"{prefix}_smpl_da.obj", maintain_orders=True, process=False) | |
smpl_tree = cKDTree(smpl_da.vertices) | |
dist, idx = smpl_tree.query(econ_da.vertices, k=5) | |
knn_weights = np.exp(-dist**2) | |
knn_weights /= knn_weights.sum(axis=1, keepdims=True) | |
econ_J_regressor = (smpl_model.J_regressor[:, idx] * knn_weights[None]).sum(dim=-1) | |
econ_lbs_weights = (smpl_model.lbs_weights.T[:, idx] * knn_weights[None]).sum(dim=-1).T | |
num_posedirs = smpl_model.posedirs.shape[0] | |
econ_posedirs = ( | |
smpl_model.posedirs.view(num_posedirs, -1, 3)[:, idx, :] * knn_weights[None, ..., None] | |
).sum(dim=-2).view(num_posedirs, -1).float() | |
econ_J_regressor /= econ_J_regressor.sum(dim=1, keepdims=True).clip(min=1e-10) | |
econ_lbs_weights /= econ_lbs_weights.sum(dim=1, keepdims=True) | |
# re-compute da-pose rot_mat for ECON | |
rot_mat_da = smpl_out_lst[1].vertex_transformation.detach()[0][idx[:, 0]] | |
econ_da_verts = torch.tensor(econ_da.vertices).float() | |
econ_cano_verts = torch.inverse(rot_mat_da) @ torch.cat( | |
[econ_da_verts, torch.ones_like(econ_da_verts)[..., :1]], dim=1 | |
).unsqueeze(-1) | |
econ_cano_verts = econ_cano_verts[:, :3, 0].double() | |
# ---------------------------------------------------- | |
# use any SMPL-X pose to animate ECON reconstruction | |
# ---------------------------------------------------- | |
new_pose = smpl_out_lst[2].full_pose | |
new_pose[:, :3] = 0. | |
posed_econ_verts, _ = general_lbs( | |
pose=new_pose, | |
v_template=econ_cano_verts.unsqueeze(0), | |
posedirs=econ_posedirs, | |
J_regressor=econ_J_regressor, | |
parents=smpl_model.parents, | |
lbs_weights=econ_lbs_weights | |
) | |
econ_pose = trimesh.Trimesh(posed_econ_verts[0].detach(), econ_da.faces) | |
econ_pose.export(f"{prefix}_econ_pose.obj") | |