Spaces:
Runtime error
Runtime error
# -*- coding: utf-8 -*- | |
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is | |
# holder of all proprietary rights on this computer program. | |
# You can only use this computer program if you have closed | |
# a license agreement with MPG or you get the right to use the computer | |
# program from someone who is authorized to grant you that right. | |
# Any use of the computer program without a valid license is prohibited and | |
# liable to prosecution. | |
# | |
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung | |
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute | |
# for Intelligent Systems. All rights reserved. | |
# | |
# Contact: [email protected] | |
from typing import Tuple | |
import numpy as np | |
import torch | |
from PIL import Image | |
from pytorch3d import _C | |
from pytorch3d.ops.mesh_face_areas_normals import mesh_face_areas_normals | |
from pytorch3d.ops.packed_to_padded import packed_to_padded | |
from pytorch3d.structures import Pointclouds | |
from torch.autograd import Function | |
from torch.autograd.function import once_differentiable | |
from torchvision.utils import make_grid | |
from lib.common.render import Render | |
from lib.dataset.mesh_util import projection | |
_DEFAULT_MIN_TRIANGLE_AREA: float = 5e-3 | |
# PointFaceDistance | |
class _PointFaceDistance(Function): | |
""" | |
Torch autograd Function wrapper PointFaceDistance Cuda implementation | |
""" | |
def forward( | |
ctx, | |
points, | |
points_first_idx, | |
tris, | |
tris_first_idx, | |
max_points, | |
min_triangle_area=_DEFAULT_MIN_TRIANGLE_AREA, | |
): | |
""" | |
Args: | |
ctx: Context object used to calculate gradients. | |
points: FloatTensor of shape `(P, 3)` | |
points_first_idx: LongTensor of shape `(N,)` indicating the first point | |
index in each example in the batch | |
tris: FloatTensor of shape `(T, 3, 3)` of triangular faces. The `t`-th | |
triangular face is spanned by `(tris[t, 0], tris[t, 1], tris[t, 2])` | |
tris_first_idx: LongTensor of shape `(N,)` indicating the first face | |
index in each example in the batch | |
max_points: Scalar equal to maximum number of points in the batch | |
min_triangle_area: (float, defaulted) Triangles of area less than this | |
will be treated as points/lines. | |
Returns: | |
dists: FloatTensor of shape `(P,)`, where `dists[p]` is the squared | |
euclidean distance of `p`-th point to the closest triangular face | |
in the corresponding example in the batch | |
idxs: LongTensor of shape `(P,)` indicating the closest triangular face | |
in the corresponding example in the batch. | |
`dists[p]` is | |
`d(points[p], tris[idxs[p], 0], tris[idxs[p], 1], tris[idxs[p], 2])` | |
where `d(u, v0, v1, v2)` is the distance of point `u` from the triangular | |
face `(v0, v1, v2)` | |
""" | |
dists, idxs = _C.point_face_dist_forward( | |
points, | |
points_first_idx, | |
tris, | |
tris_first_idx, | |
max_points, | |
min_triangle_area, | |
) | |
ctx.save_for_backward(points, tris, idxs) | |
ctx.min_triangle_area = min_triangle_area | |
return dists, idxs | |
def backward(ctx, grad_dists): | |
grad_dists = grad_dists.contiguous() | |
points, tris, idxs = ctx.saved_tensors | |
min_triangle_area = ctx.min_triangle_area | |
grad_points, grad_tris = _C.point_face_dist_backward( | |
points, tris, idxs, grad_dists, min_triangle_area | |
) | |
return grad_points, None, grad_tris, None, None, None | |
def _rand_barycentric_coords( | |
size1, size2, dtype: torch.dtype, device: torch.device | |
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: | |
""" | |
Helper function to generate random barycentric coordinates which are uniformly | |
distributed over a triangle. | |
Args: | |
size1, size2: The number of coordinates generated will be size1*size2. | |
Output tensors will each be of shape (size1, size2). | |
dtype: Datatype to generate. | |
device: A torch.device object on which the outputs will be allocated. | |
Returns: | |
w0, w1, w2: Tensors of shape (size1, size2) giving random barycentric | |
coordinates | |
""" | |
uv = torch.rand(2, size1, size2, dtype=dtype, device=device) | |
u, v = uv[0], uv[1] | |
u_sqrt = u.sqrt() | |
w0 = 1.0 - u_sqrt | |
w1 = u_sqrt * (1.0 - v) | |
w2 = u_sqrt * v | |
w = torch.cat([w0[..., None], w1[..., None], w2[..., None]], dim=2) | |
return w | |
def sample_points_from_meshes(meshes, num_samples: int = 10000): | |
""" | |
Convert a batch of meshes to a batch of pointclouds by uniformly sampling | |
points on the surface of the mesh with probability proportional to the | |
face area. | |
Args: | |
meshes: A Meshes object with a batch of N meshes. | |
num_samples: Integer giving the number of point samples per mesh. | |
return_normals: If True, return normals for the sampled points. | |
return_textures: If True, return textures for the sampled points. | |
Returns: | |
3-element tuple containing | |
- **samples**: FloatTensor of shape (N, num_samples, 3) giving the | |
coordinates of sampled points for each mesh in the batch. For empty | |
meshes the corresponding row in the samples array will be filled with 0. | |
- **normals**: FloatTensor of shape (N, num_samples, 3) giving a normal vector | |
to each sampled point. Only returned if return_normals is True. | |
For empty meshes the corresponding row in the normals array will | |
be filled with 0. | |
- **textures**: FloatTensor of shape (N, num_samples, C) giving a C-dimensional | |
texture vector to each sampled point. Only returned if return_textures is True. | |
For empty meshes the corresponding row in the textures array will | |
be filled with 0. | |
Note that in a future releases, we will replace the 3-element tuple output | |
with a `Pointclouds` datastructure, as follows | |
.. code-block:: python | |
Pointclouds(samples, normals=normals, features=textures) | |
""" | |
if meshes.isempty(): | |
raise ValueError("Meshes are empty.") | |
verts = meshes.verts_packed() | |
if not torch.isfinite(verts).all(): | |
raise ValueError("Meshes contain nan or inf.") | |
faces = meshes.faces_packed() | |
mesh_to_face = meshes.mesh_to_faces_packed_first_idx() | |
num_meshes = len(meshes) | |
num_valid_meshes = torch.sum(meshes.valid) # Non empty meshes. | |
# Initialize samples tensor with fill value 0 for empty meshes. | |
samples = torch.zeros((num_meshes, num_samples, 3), device=meshes.device) | |
# Only compute samples for non empty meshes | |
with torch.no_grad(): | |
areas, _ = mesh_face_areas_normals(verts, faces) # Face areas can be zero. | |
max_faces = meshes.num_faces_per_mesh().max().item() | |
areas_padded = packed_to_padded(areas, mesh_to_face[meshes.valid], max_faces) # (N, F) | |
# TODO (gkioxari) Confirm multinomial bug is not present with real data. | |
samples_face_idxs = areas_padded.multinomial( | |
num_samples, replacement=True | |
) # (N, num_samples) | |
samples_face_idxs += mesh_to_face[meshes.valid].view(num_valid_meshes, 1) | |
# Randomly generate barycentric coords. | |
# w (N, num_samples, 3) | |
# sample_face_idxs (N, num_samples) | |
# samples_verts (N, num_samples, 3, 3) | |
samples_bw = _rand_barycentric_coords(num_valid_meshes, num_samples, verts.dtype, verts.device) | |
sample_verts = verts[faces][samples_face_idxs] | |
samples[meshes.valid] = (sample_verts * samples_bw[..., None]).sum(dim=-2) | |
return samples, samples_face_idxs, samples_bw | |
def point_mesh_distance(meshes, pcls, weighted=True): | |
if len(meshes) != len(pcls): | |
raise ValueError("meshes and pointclouds must be equal sized batches") | |
# packed representation for pointclouds | |
points = pcls.points_packed() # (P, 3) | |
points_first_idx = pcls.cloud_to_packed_first_idx() | |
max_points = pcls.num_points_per_cloud().max().item() | |
# packed representation for faces | |
verts_packed = meshes.verts_packed() | |
faces_packed = meshes.faces_packed() | |
tris = verts_packed[faces_packed] # (T, 3, 3) | |
tris_first_idx = meshes.mesh_to_faces_packed_first_idx() | |
# point to face distance: shape (P,) | |
point_to_face, idxs = _PointFaceDistance.apply( | |
points, points_first_idx, tris, tris_first_idx, max_points, 5e-3 | |
) | |
if weighted: | |
# weight each example by the inverse of number of points in the example | |
point_to_cloud_idx = pcls.packed_to_cloud_idx() # (sum(P_i),) | |
num_points_per_cloud = pcls.num_points_per_cloud() # (N,) | |
weights_p = num_points_per_cloud.gather(0, point_to_cloud_idx) | |
weights_p = 1.0 / weights_p.float() | |
point_to_face = torch.sqrt(point_to_face) * weights_p | |
return point_to_face, idxs | |
class Evaluator: | |
def __init__(self, device): | |
self.render = Render(size=512, device=device) | |
self.device = device | |
def set_mesh(self, result_dict, scale=True): | |
for k, v in result_dict.items(): | |
setattr(self, k, v) | |
if scale: | |
self.verts_pr -= self.recon_size / 2.0 | |
self.verts_pr /= self.recon_size / 2.0 | |
self.verts_gt = projection(self.verts_gt, self.calib) | |
self.verts_gt[:, 1] *= -1 | |
self.render.load_meshes(self.verts_pr, self.faces_pr) | |
self.src_mesh = self.render.meshes | |
self.render.load_meshes(self.verts_gt, self.faces_gt) | |
self.tgt_mesh = self.render.meshes | |
def calculate_normal_consist(self, normal_path): | |
self.render.meshes = self.src_mesh | |
src_normal_imgs = self.render.get_image(cam_type="four", bg="black") | |
self.render.meshes = self.tgt_mesh | |
tgt_normal_imgs = self.render.get_image(cam_type="four", bg="black") | |
src_normal_arr = make_grid(torch.cat(src_normal_imgs, dim=0), nrow=4, padding=0) # [-1,1] | |
tgt_normal_arr = make_grid(torch.cat(tgt_normal_imgs, dim=0), nrow=4, padding=0) # [-1,1] | |
src_norm = torch.norm(src_normal_arr, dim=0, keepdim=True) | |
tgt_norm = torch.norm(tgt_normal_arr, dim=0, keepdim=True) | |
src_norm[src_norm == 0.0] = 1.0 | |
tgt_norm[tgt_norm == 0.0] = 1.0 | |
src_normal_arr /= src_norm | |
tgt_normal_arr /= tgt_norm | |
# sim_mask = self.get_laplacian_2d(tgt_normal_arr).to(self.device) | |
src_normal_arr = (src_normal_arr + 1.0) * 0.5 | |
tgt_normal_arr = (tgt_normal_arr + 1.0) * 0.5 | |
error = (((src_normal_arr - tgt_normal_arr)**2).sum(dim=0).mean()) * 4.0 | |
# error_hf = ((((src_normal_arr - tgt_normal_arr) * sim_mask)**2).sum(dim=0).mean()) * 4.0 | |
normal_img = Image.fromarray(( | |
torch.cat([src_normal_arr, tgt_normal_arr], | |
dim=1).permute(1, 2, 0).detach().cpu().numpy() * 255.0 | |
).astype(np.uint8)) | |
normal_img.save(normal_path) | |
return error | |
def calculate_chamfer_p2s(self, num_samples=1000): | |
samples_tgt, _, _ = sample_points_from_meshes(self.tgt_mesh, num_samples) | |
samples_src, _, _ = sample_points_from_meshes(self.src_mesh, num_samples) | |
tgt_points = Pointclouds(samples_tgt) | |
src_points = Pointclouds(samples_src) | |
p2s_dist = point_mesh_distance(self.src_mesh, tgt_points)[0].sum() * 100.0 | |
chamfer_dist = ( | |
point_mesh_distance(self.tgt_mesh, src_points)[0].sum() * 100.0 + p2s_dist | |
) * 0.5 | |
return chamfer_dist, p2s_dist | |
def calc_acc(self, output, target, thres=0.5, use_sdf=False): | |
# # remove the surface points with thres | |
# non_surf_ids = (target != thres) | |
# output = output[non_surf_ids] | |
# target = target[non_surf_ids] | |
with torch.no_grad(): | |
output = output.masked_fill(output < thres, 0.0) | |
output = output.masked_fill(output > thres, 1.0) | |
if use_sdf: | |
target = target.masked_fill(target < thres, 0.0) | |
target = target.masked_fill(target > thres, 1.0) | |
acc = output.eq(target).float().mean() | |
# iou, precison, recall | |
output = output > thres | |
target = target > thres | |
union = output | target | |
inter = output & target | |
_max = torch.tensor(1.0).to(output.device) | |
union = max(union.sum().float(), _max) | |
true_pos = max(inter.sum().float(), _max) | |
vol_pred = max(output.sum().float(), _max) | |
vol_gt = max(target.sum().float(), _max) | |
return acc, true_pos / union, true_pos / vol_pred, true_pos / vol_gt | |