Spaces:
Runtime error
Runtime error
""" | |
Copyright (C) 2019 NVIDIA Corporation. Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu. | |
BSD License. All rights reserved. | |
Redistribution and use in source and binary forms, with or without | |
modification, are permitted provided that the following conditions are met: | |
* Redistributions of source code must retain the above copyright notice, this | |
list of conditions and the following disclaimer. | |
* Redistributions in binary form must reproduce the above copyright notice, | |
this list of conditions and the following disclaimer in the documentation | |
and/or other materials provided with the distribution. | |
THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL | |
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR ANY PARTICULAR PURPOSE. | |
IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL | |
DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, | |
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING | |
OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | |
""" | |
import functools | |
import numpy as np | |
import pytorch_lightning as pl | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torchvision import models | |
############################################################################### | |
# Functions | |
############################################################################### | |
def weights_init(m): | |
classname = m.__class__.__name__ | |
if classname.find("Conv") != -1: | |
m.weight.data.normal_(0.0, 0.02) | |
elif classname.find("BatchNorm2d") != -1: | |
m.weight.data.normal_(1.0, 0.02) | |
m.bias.data.fill_(0) | |
def get_norm_layer(norm_type="instance"): | |
if norm_type == "batch": | |
norm_layer = functools.partial(nn.BatchNorm2d, affine=True) | |
elif norm_type == "instance": | |
norm_layer = functools.partial(nn.InstanceNorm2d, affine=False) | |
else: | |
raise NotImplementedError("normalization layer [%s] is not found" % norm_type) | |
return norm_layer | |
def define_G( | |
input_nc, | |
output_nc, | |
ngf, | |
netG, | |
n_downsample_global=3, | |
n_blocks_global=9, | |
n_local_enhancers=1, | |
n_blocks_local=3, | |
norm="instance", | |
gpu_ids=[], | |
last_op=nn.Tanh(), | |
): | |
norm_layer = get_norm_layer(norm_type=norm) | |
if netG == "global": | |
netG = GlobalGenerator( | |
input_nc, | |
output_nc, | |
ngf, | |
n_downsample_global, | |
n_blocks_global, | |
norm_layer, | |
last_op=last_op, | |
) | |
elif netG == "local": | |
netG = LocalEnhancer( | |
input_nc, | |
output_nc, | |
ngf, | |
n_downsample_global, | |
n_blocks_global, | |
n_local_enhancers, | |
n_blocks_local, | |
norm_layer, | |
) | |
elif netG == "encoder": | |
netG = Encoder(input_nc, output_nc, ngf, n_downsample_global, norm_layer) | |
else: | |
raise ("generator not implemented!") | |
# print(netG) | |
if len(gpu_ids) > 0: | |
assert torch.cuda.is_available() | |
netG.cuda(gpu_ids[0]) | |
netG.apply(weights_init) | |
return netG | |
def define_D( | |
input_nc, | |
ndf, | |
n_layers_D, | |
norm='instance', | |
use_sigmoid=False, | |
num_D=1, | |
getIntermFeat=False, | |
gpu_ids=[] | |
): | |
norm_layer = get_norm_layer(norm_type=norm) | |
netD = MultiscaleDiscriminator( | |
input_nc, ndf, n_layers_D, norm_layer, use_sigmoid, num_D, getIntermFeat | |
) | |
if len(gpu_ids) > 0: | |
assert (torch.cuda.is_available()) | |
netD.cuda(gpu_ids[0]) | |
netD.apply(weights_init) | |
return netD | |
def print_network(net): | |
if isinstance(net, list): | |
net = net[0] | |
num_params = 0 | |
for param in net.parameters(): | |
num_params += param.numel() | |
print(net) | |
print("Total number of parameters: %d" % num_params) | |
############################################################################## | |
# Generator | |
############################################################################## | |
class LocalEnhancer(pl.LightningModule): | |
def __init__( | |
self, | |
input_nc, | |
output_nc, | |
ngf=32, | |
n_downsample_global=3, | |
n_blocks_global=9, | |
n_local_enhancers=1, | |
n_blocks_local=3, | |
norm_layer=nn.BatchNorm2d, | |
padding_type="reflect", | |
): | |
super(LocalEnhancer, self).__init__() | |
self.n_local_enhancers = n_local_enhancers | |
###### global generator model ##### | |
ngf_global = ngf * (2**n_local_enhancers) | |
model_global = GlobalGenerator( | |
input_nc, | |
output_nc, | |
ngf_global, | |
n_downsample_global, | |
n_blocks_global, | |
norm_layer, | |
).model | |
model_global = [ | |
model_global[i] for i in range(len(model_global) - 3) | |
] # get rid of final convolution layers | |
self.model = nn.Sequential(*model_global) | |
###### local enhancer layers ##### | |
for n in range(1, n_local_enhancers + 1): | |
# downsample | |
ngf_global = ngf * (2**(n_local_enhancers - n)) | |
model_downsample = [ | |
nn.ReflectionPad2d(3), | |
nn.Conv2d(input_nc, ngf_global, kernel_size=7, padding=0), | |
norm_layer(ngf_global), | |
nn.ReLU(True), | |
nn.Conv2d(ngf_global, ngf_global * 2, kernel_size=3, stride=2, padding=1), | |
norm_layer(ngf_global * 2), | |
nn.ReLU(True), | |
] | |
# residual blocks | |
model_upsample = [] | |
for i in range(n_blocks_local): | |
model_upsample += [ | |
ResnetBlock(ngf_global * 2, padding_type=padding_type, norm_layer=norm_layer) | |
] | |
# upsample | |
model_upsample += [ | |
nn.ConvTranspose2d( | |
ngf_global * 2, | |
ngf_global, | |
kernel_size=3, | |
stride=2, | |
padding=1, | |
output_padding=1, | |
), | |
norm_layer(ngf_global), | |
nn.ReLU(True), | |
] | |
# final convolution | |
if n == n_local_enhancers: | |
model_upsample += [ | |
nn.ReflectionPad2d(3), | |
nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0), | |
nn.Tanh(), | |
] | |
setattr(self, "model" + str(n) + "_1", nn.Sequential(*model_downsample)) | |
setattr(self, "model" + str(n) + "_2", nn.Sequential(*model_upsample)) | |
self.downsample = nn.AvgPool2d(3, stride=2, padding=[1, 1], count_include_pad=False) | |
def forward(self, input): | |
# create input pyramid | |
input_downsampled = [input] | |
for i in range(self.n_local_enhancers): | |
input_downsampled.append(self.downsample(input_downsampled[-1])) | |
# output at coarest level | |
output_prev = self.model(input_downsampled[-1]) | |
# build up one layer at a time | |
for n_local_enhancers in range(1, self.n_local_enhancers + 1): | |
model_downsample = getattr(self, "model" + str(n_local_enhancers) + "_1") | |
model_upsample = getattr(self, "model" + str(n_local_enhancers) + "_2") | |
input_i = input_downsampled[self.n_local_enhancers - n_local_enhancers] | |
output_prev = model_upsample(model_downsample(input_i) + output_prev) | |
return output_prev | |
class GlobalGenerator(pl.LightningModule): | |
def __init__( | |
self, | |
input_nc, | |
output_nc, | |
ngf=64, | |
n_downsampling=3, | |
n_blocks=9, | |
norm_layer=nn.BatchNorm2d, | |
padding_type="reflect", | |
last_op=nn.Tanh(), | |
): | |
assert n_blocks >= 0 | |
super(GlobalGenerator, self).__init__() | |
activation = nn.ReLU(True) | |
model = [ | |
nn.ReflectionPad2d(3), | |
nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0), | |
norm_layer(ngf), | |
activation, | |
] | |
# downsample | |
for i in range(n_downsampling): | |
mult = 2**i | |
model += [ | |
nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1), | |
norm_layer(ngf * mult * 2), | |
activation, | |
] | |
# resnet blocks | |
mult = 2**n_downsampling | |
for i in range(n_blocks): | |
model += [ | |
ResnetBlock( | |
ngf * mult, | |
padding_type=padding_type, | |
activation=activation, | |
norm_layer=norm_layer, | |
) | |
] | |
# upsample | |
for i in range(n_downsampling): | |
mult = 2**(n_downsampling - i) | |
model += [ | |
nn.ConvTranspose2d( | |
ngf * mult, | |
int(ngf * mult / 2), | |
kernel_size=3, | |
stride=2, | |
padding=1, | |
output_padding=1, | |
), | |
norm_layer(int(ngf * mult / 2)), | |
activation, | |
] | |
model += [ | |
nn.ReflectionPad2d(3), | |
nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0), | |
] | |
if last_op is not None: | |
model += [last_op] | |
self.model = nn.Sequential(*model) | |
def forward(self, input): | |
return self.model(input) | |
# Defines the PatchGAN discriminator with the specified arguments. | |
class NLayerDiscriminator(nn.Module): | |
def __init__( | |
self, | |
input_nc, | |
ndf=64, | |
n_layers=3, | |
norm_layer=nn.BatchNorm2d, | |
use_sigmoid=False, | |
getIntermFeat=False | |
): | |
super(NLayerDiscriminator, self).__init__() | |
self.getIntermFeat = getIntermFeat | |
self.n_layers = n_layers | |
kw = 4 | |
padw = int(np.ceil((kw - 1.0) / 2)) | |
sequence = [[ | |
nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), | |
nn.LeakyReLU(0.2, True) | |
]] | |
nf = ndf | |
for n in range(1, n_layers): | |
nf_prev = nf | |
nf = min(nf * 2, 512) | |
sequence += [[ | |
nn.Conv2d(nf_prev, nf, kernel_size=kw, stride=2, padding=padw), | |
norm_layer(nf), | |
nn.LeakyReLU(0.2, True) | |
]] | |
nf_prev = nf | |
nf = min(nf * 2, 512) | |
sequence += [[ | |
nn.Conv2d(nf_prev, nf, kernel_size=kw, stride=1, padding=padw), | |
norm_layer(nf), | |
nn.LeakyReLU(0.2, True) | |
]] | |
sequence += [[nn.Conv2d(nf, 1, kernel_size=kw, stride=1, padding=padw)]] | |
if use_sigmoid: | |
sequence += [[nn.Sigmoid()]] | |
if getIntermFeat: | |
for n in range(len(sequence)): | |
setattr(self, 'model' + str(n), nn.Sequential(*sequence[n])) | |
else: | |
sequence_stream = [] | |
for n in range(len(sequence)): | |
sequence_stream += sequence[n] | |
self.model = nn.Sequential(*sequence_stream) | |
def forward(self, input): | |
if self.getIntermFeat: | |
res = [input] | |
for n in range(self.n_layers + 2): | |
model = getattr(self, 'model' + str(n)) | |
res.append(model(res[-1])) | |
return res[1:] | |
else: | |
return self.model(input) | |
class MultiscaleDiscriminator(pl.LightningModule): | |
def __init__( | |
self, | |
input_nc, | |
ndf=64, | |
n_layers=3, | |
norm_layer=nn.BatchNorm2d, | |
use_sigmoid=False, | |
num_D=3, | |
getIntermFeat=False | |
): | |
super(MultiscaleDiscriminator, self).__init__() | |
self.num_D = num_D | |
self.n_layers = n_layers | |
self.getIntermFeat = getIntermFeat | |
for i in range(num_D): | |
netD = NLayerDiscriminator( | |
input_nc, ndf, n_layers, norm_layer, use_sigmoid, getIntermFeat | |
) | |
if getIntermFeat: | |
for j in range(n_layers + 2): | |
setattr( | |
self, 'scale' + str(i) + '_layer' + str(j), getattr(netD, 'model' + str(j)) | |
) | |
else: | |
setattr(self, 'layer' + str(i), netD.model) | |
self.downsample = nn.AvgPool2d(3, stride=2, padding=[1, 1], count_include_pad=False) | |
def singleD_forward(self, model, input): | |
if self.getIntermFeat: | |
result = [input] | |
for i in range(len(model)): | |
result.append(model[i](result[-1])) | |
return result[1:] | |
else: | |
return [model(input)] | |
def forward(self, input): | |
num_D = self.num_D | |
result = [] | |
input_downsampled = input.clone() | |
for i in range(num_D): | |
if self.getIntermFeat: | |
model = [ | |
getattr(self, 'scale' + str(num_D - 1 - i) + '_layer' + str(j)) | |
for j in range(self.n_layers + 2) | |
] | |
else: | |
model = getattr(self, 'layer' + str(num_D - 1 - i)) | |
result.append(self.singleD_forward(model, input_downsampled)) | |
if i != (num_D - 1): | |
input_downsampled = self.downsample(input_downsampled) | |
return result | |
# Define a resnet block | |
class ResnetBlock(pl.LightningModule): | |
def __init__(self, dim, padding_type, norm_layer, activation=nn.ReLU(True), use_dropout=False): | |
super(ResnetBlock, self).__init__() | |
self.conv_block = self.build_conv_block( | |
dim, padding_type, norm_layer, activation, use_dropout | |
) | |
def build_conv_block(self, dim, padding_type, norm_layer, activation, use_dropout): | |
conv_block = [] | |
p = 0 | |
if padding_type == "reflect": | |
conv_block += [nn.ReflectionPad2d(1)] | |
elif padding_type == "replicate": | |
conv_block += [nn.ReplicationPad2d(1)] | |
elif padding_type == "zero": | |
p = 1 | |
else: | |
raise NotImplementedError("padding [%s] is not implemented" % padding_type) | |
conv_block += [ | |
nn.Conv2d(dim, dim, kernel_size=3, padding=p), | |
norm_layer(dim), | |
activation, | |
] | |
if use_dropout: | |
conv_block += [nn.Dropout(0.5)] | |
p = 0 | |
if padding_type == "reflect": | |
conv_block += [nn.ReflectionPad2d(1)] | |
elif padding_type == "replicate": | |
conv_block += [nn.ReplicationPad2d(1)] | |
elif padding_type == "zero": | |
p = 1 | |
else: | |
raise NotImplementedError("padding [%s] is not implemented" % padding_type) | |
conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p), norm_layer(dim)] | |
return nn.Sequential(*conv_block) | |
def forward(self, x): | |
out = x + self.conv_block(x) | |
return out | |
class Encoder(pl.LightningModule): | |
def __init__(self, input_nc, output_nc, ngf=32, n_downsampling=4, norm_layer=nn.BatchNorm2d): | |
super(Encoder, self).__init__() | |
self.output_nc = output_nc | |
model = [ | |
nn.ReflectionPad2d(3), | |
nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0), | |
norm_layer(ngf), | |
nn.ReLU(True), | |
] | |
# downsample | |
for i in range(n_downsampling): | |
mult = 2**i | |
model += [ | |
nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1), | |
norm_layer(ngf * mult * 2), | |
nn.ReLU(True), | |
] | |
# upsample | |
for i in range(n_downsampling): | |
mult = 2**(n_downsampling - i) | |
model += [ | |
nn.ConvTranspose2d( | |
ngf * mult, | |
int(ngf * mult / 2), | |
kernel_size=3, | |
stride=2, | |
padding=1, | |
output_padding=1, | |
), | |
norm_layer(int(ngf * mult / 2)), | |
nn.ReLU(True), | |
] | |
model += [ | |
nn.ReflectionPad2d(3), | |
nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0), | |
nn.Tanh(), | |
] | |
self.model = nn.Sequential(*model) | |
def forward(self, input, inst): | |
outputs = self.model(input) | |
# instance-wise average pooling | |
outputs_mean = outputs.clone() | |
inst_list = np.unique(inst.cpu().numpy().astype(int)) | |
for i in inst_list: | |
for b in range(input.size()[0]): | |
indices = (inst[b:b + 1] == int(i)).nonzero() # n x 4 | |
for j in range(self.output_nc): | |
output_ins = outputs[indices[:, 0] + b, indices[:, 1] + j, indices[:, 2], | |
indices[:, 3], ] | |
mean_feat = torch.mean(output_ins).expand_as(output_ins) | |
outputs_mean[indices[:, 0] + b, indices[:, 1] + j, indices[:, 2], | |
indices[:, 3], ] = mean_feat | |
return outputs_mean | |
class Vgg19(nn.Module): | |
def __init__(self, requires_grad=False): | |
super(Vgg19, self).__init__() | |
vgg_pretrained_features = models.vgg19(weights=models.VGG19_Weights.DEFAULT).features | |
self.slice1 = torch.nn.Sequential() | |
self.slice2 = torch.nn.Sequential() | |
self.slice3 = torch.nn.Sequential() | |
self.slice4 = torch.nn.Sequential() | |
self.slice5 = torch.nn.Sequential() | |
for x in range(2): | |
self.slice1.add_module(str(x), vgg_pretrained_features[x]) | |
for x in range(2, 7): | |
self.slice2.add_module(str(x), vgg_pretrained_features[x]) | |
for x in range(7, 12): | |
self.slice3.add_module(str(x), vgg_pretrained_features[x]) | |
for x in range(12, 21): | |
self.slice4.add_module(str(x), vgg_pretrained_features[x]) | |
for x in range(21, 30): | |
self.slice5.add_module(str(x), vgg_pretrained_features[x]) | |
if not requires_grad: | |
for param in self.parameters(): | |
param.requires_grad = False | |
def forward(self, X): | |
h_relu1 = self.slice1(X) | |
h_relu2 = self.slice2(h_relu1) | |
h_relu3 = self.slice3(h_relu2) | |
h_relu4 = self.slice4(h_relu3) | |
h_relu5 = self.slice5(h_relu4) | |
out = [h_relu1, h_relu2, h_relu3, h_relu4, h_relu5] | |
return out | |
class VGG19FeatLayer(nn.Module): | |
def __init__(self): | |
super(VGG19FeatLayer, self).__init__() | |
self.vgg19 = models.vgg19(weights=models.VGG19_Weights.DEFAULT).features.eval() | |
self.register_buffer("mean", torch.tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1)) | |
self.register_buffer("std", torch.tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1)) | |
def forward(self, x): | |
out = {} | |
x = x - self.mean | |
x = x / self.std | |
ci = 1 | |
ri = 0 | |
for layer in self.vgg19.children(): | |
if isinstance(layer, nn.Conv2d): | |
ri += 1 | |
name = 'conv{}_{}'.format(ci, ri) | |
elif isinstance(layer, nn.ReLU): | |
ri += 1 | |
name = 'relu{}_{}'.format(ci, ri) | |
layer = nn.ReLU(inplace=False) | |
elif isinstance(layer, nn.MaxPool2d): | |
ri = 0 | |
name = 'pool_{}'.format(ci) | |
ci += 1 | |
elif isinstance(layer, nn.BatchNorm2d): | |
name = 'bn_{}'.format(ci) | |
else: | |
raise RuntimeError('Unrecognized layer: {}'.format(layer.__class__.__name__)) | |
x = layer(x) | |
out[name] = x | |
# print([x for x in out]) | |
return out | |
class VGGLoss(pl.LightningModule): | |
def __init__(self): | |
super(VGGLoss, self).__init__() | |
self.vgg = Vgg19().eval() | |
self.criterion = nn.L1Loss() | |
self.weights = [1.0 / 32, 1.0 / 16, 1.0 / 8, 1.0 / 4, 1.0] | |
def forward(self, x, y): | |
x_vgg, y_vgg = self.vgg(x), self.vgg(y) | |
loss = 0 | |
for i in range(len(x_vgg)): | |
loss += self.weights[i] * self.criterion(x_vgg[i], y_vgg[i].detach()) | |
return loss | |
class GANLoss(pl.LightningModule): | |
def __init__(self, use_lsgan=True, target_real_label=1.0, target_fake_label=0.0): | |
super(GANLoss, self).__init__() | |
self.real_label = target_real_label | |
self.fake_label = target_fake_label | |
self.real_label_var = None | |
self.fake_label_var = None | |
self.tensor = torch.cuda.FloatTensor | |
if use_lsgan: | |
self.loss = nn.MSELoss() | |
else: | |
self.loss = nn.BCELoss() | |
def get_target_tensor(self, input, target_is_real): | |
target_tensor = None | |
if target_is_real: | |
create_label = ((self.real_label_var is None) or | |
(self.real_label_var.numel() != input.numel())) | |
if create_label: | |
real_tensor = self.tensor(input.size()).fill_(self.real_label) | |
self.real_label_var = real_tensor | |
self.real_label_var.requires_grad = False | |
target_tensor = self.real_label_var | |
else: | |
create_label = ((self.fake_label_var is None) or | |
(self.fake_label_var.numel() != input.numel())) | |
if create_label: | |
fake_tensor = self.tensor(input.size()).fill_(self.fake_label) | |
self.fake_label_var = fake_tensor | |
self.fake_label_var.requires_grad = False | |
target_tensor = self.fake_label_var | |
return target_tensor | |
def __call__(self, input, target_is_real): | |
if isinstance(input[0], list): | |
loss = 0 | |
for input_i in input: | |
pred = input_i[-1] | |
target_tensor = self.get_target_tensor(pred, target_is_real) | |
loss += self.loss(pred, target_tensor) | |
return loss | |
else: | |
target_tensor = self.get_target_tensor(input[-1], target_is_real) | |
return self.loss(input[-1], target_tensor) | |
class IDMRFLoss(pl.LightningModule): | |
def __init__(self, featlayer=VGG19FeatLayer): | |
super(IDMRFLoss, self).__init__() | |
self.featlayer = featlayer() | |
self.feat_style_layers = {'relu3_2': 1.0, 'relu4_2': 1.0} | |
self.feat_content_layers = {'relu4_2': 1.0} | |
self.bias = 1.0 | |
self.nn_stretch_sigma = 0.5 | |
self.lambda_style = 1.0 | |
self.lambda_content = 1.0 | |
def sum_normalize(self, featmaps): | |
reduce_sum = torch.sum(featmaps, dim=1, keepdim=True) | |
return featmaps / reduce_sum | |
def patch_extraction(self, featmaps): | |
patch_size = 1 | |
patch_stride = 1 | |
patches_as_depth_vectors = featmaps.unfold(2, patch_size, patch_stride).unfold( | |
3, patch_size, patch_stride | |
) | |
self.patches_OIHW = patches_as_depth_vectors.permute(0, 2, 3, 1, 4, 5) | |
dims = self.patches_OIHW.size() | |
self.patches_OIHW = self.patches_OIHW.view(-1, dims[3], dims[4], dims[5]) | |
return self.patches_OIHW | |
def compute_relative_distances(self, cdist): | |
epsilon = 1e-5 | |
div = torch.min(cdist, dim=1, keepdim=True)[0] | |
relative_dist = cdist / (div + epsilon) | |
return relative_dist | |
def exp_norm_relative_dist(self, relative_dist): | |
scaled_dist = relative_dist | |
dist_before_norm = torch.exp((self.bias - scaled_dist) / self.nn_stretch_sigma) | |
self.cs_NCHW = self.sum_normalize(dist_before_norm) | |
return self.cs_NCHW | |
def mrf_loss(self, gen, tar): | |
meanT = torch.mean(tar, 1, keepdim=True) | |
gen_feats, tar_feats = gen - meanT, tar - meanT | |
gen_feats_norm = torch.norm(gen_feats, p=2, dim=1, keepdim=True) | |
tar_feats_norm = torch.norm(tar_feats, p=2, dim=1, keepdim=True) | |
gen_normalized = gen_feats / gen_feats_norm | |
tar_normalized = tar_feats / tar_feats_norm | |
cosine_dist_l = [] | |
BatchSize = tar.size(0) | |
for i in range(BatchSize): | |
tar_feat_i = tar_normalized[i:i + 1, :, :, :] | |
gen_feat_i = gen_normalized[i:i + 1, :, :, :] | |
patches_OIHW = self.patch_extraction(tar_feat_i) | |
cosine_dist_i = F.conv2d(gen_feat_i, patches_OIHW) | |
cosine_dist_l.append(cosine_dist_i) | |
cosine_dist = torch.cat(cosine_dist_l, dim=0) | |
cosine_dist_zero_2_one = -(cosine_dist - 1) / 2 | |
relative_dist = self.compute_relative_distances(cosine_dist_zero_2_one) | |
rela_dist = self.exp_norm_relative_dist(relative_dist) | |
dims_div_mrf = rela_dist.size() | |
k_max_nc = torch.max(rela_dist.view(dims_div_mrf[0], dims_div_mrf[1], -1), dim=2)[0] | |
div_mrf = torch.mean(k_max_nc, dim=1) | |
div_mrf_sum = -torch.log(div_mrf) | |
div_mrf_sum = torch.sum(div_mrf_sum) | |
return div_mrf_sum | |
def forward(self, gen, tar): | |
## gen: [bz,3,h,w] rgb [0,1] | |
gen_vgg_feats = self.featlayer(gen) | |
tar_vgg_feats = self.featlayer(tar) | |
style_loss_list = [ | |
self.feat_style_layers[layer] * | |
self.mrf_loss(gen_vgg_feats[layer], tar_vgg_feats[layer]) | |
for layer in self.feat_style_layers | |
] | |
self.style_loss = functools.reduce(lambda x, y: x + y, style_loss_list) * self.lambda_style | |
content_loss_list = [ | |
self.feat_content_layers[layer] * | |
self.mrf_loss(gen_vgg_feats[layer], tar_vgg_feats[layer]) | |
for layer in self.feat_content_layers | |
] | |
self.content_loss = functools.reduce( | |
lambda x, y: x + y, content_loss_list | |
) * self.lambda_content | |
return self.style_loss + self.content_loss | |