ECON / lib /pixielib /models /moderators.py
Yuliang's picture
Support TEXTure
487ee6d
raw
history blame
3.3 kB
""" Moderator
# Input feature: body, part(head, hand)
# output: fused feature, weight
"""
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
# MLP + temperature softmax
# w = SoftMax(w^\prime * temperature)
class TempSoftmaxFusion(nn.Module):
def __init__(self, channels=[2048 * 2, 1024, 1], detach_inputs=False, detach_feature=False):
super(TempSoftmaxFusion, self).__init__()
self.detach_inputs = detach_inputs
self.detach_feature = detach_feature
# weight
layers = []
for l in range(0, len(channels) - 1):
layers.append(nn.Linear(channels[l], channels[l + 1]))
if l < len(channels) - 2:
layers.append(nn.ReLU())
self.layers = nn.Sequential(*layers)
# temperature
self.register_parameter("temperature", nn.Parameter(torch.ones(1)))
def forward(self, x, y, work=True):
"""
x: feature from body
y: feature from part(head/hand)
work: whether to fuse features
"""
if work:
# 1. cat input feature, predict the weights
f_in = torch.cat([x, y], dim=1)
if self.detach_inputs:
f_in = f_in.detach()
f_temp = self.layers(f_in)
f_weight = F.softmax(f_temp * self.temperature, dim=1)
# 2. feature fusion
if self.detach_feature:
x = x.detach()
y = y.detach()
f_out = f_weight[:, [0]] * x + f_weight[:, [1]] * y
x_out = f_out
y_out = f_out
else:
x_out = x
y_out = y
f_weight = None
return x_out, y_out, f_weight
# MLP + Gumbel-Softmax trick
# w = w^{\prime} - w^{\prime}\text{.detach()} + w^{\prime}\text{.gt(0.5)}
class GumbelSoftmaxFusion(nn.Module):
def __init__(self, channels=[2048 * 2, 1024, 1], detach_inputs=False, detach_feature=False):
super(GumbelSoftmaxFusion, self).__init__()
self.detach_inputs = detach_inputs
self.detach_feature = detach_feature
# weight
layers = []
for l in range(0, len(channels) - 1):
layers.append(nn.Linear(channels[l], channels[l + 1]))
if l < len(channels) - 2:
layers.append(nn.ReLU())
layers.append(nn.Softmax())
self.layers = nn.Sequential(*layers)
def forward(self, x, y, work=True):
"""
x: feature from body
y: feature from part(head/hand)
work: whether to fuse features
"""
if work:
# 1. cat input feature, predict the weights
f_in = torch.cat([x, y], dim=-1)
if self.detach_inputs:
f_in = f_in.detach()
f_weight = self.layers(f_in)
# weight to be hard
f_weight = f_weight - f_weight.detach() + f_weight.gt(0.5)
# 2. feature fusion
if self.detach_feature:
x = x.detach()
y = y.detach()
f_out = f_weight[:, [0]] * x + f_weight[:, [1]] * y
x_out = f_out
y_out = f_out
else:
x_out = x
y_out = y
f_weight = None
return x_out, y_out, f_weight