ECON / lib /pymafx /models /pymaf_net.py
Yuliang's picture
Support TEXTure
487ee6d
raw
history blame
79.8 kB
import logging
import numpy as np
import torch
import torch.nn as nn
from lib.common.config import cfg
from lib.pymafx.core import constants
from lib.pymafx.utils.cam_params import homo_vector
from lib.pymafx.utils.geometry import (
compute_twist_rotation,
projection,
rot6d_to_rotmat,
rotation_matrix_to_angle_axis,
rotmat_to_rot6d,
)
from lib.pymafx.utils.imutils import j2d_processing
from lib.smplx.lbs import batch_rodrigues
from .attention import get_att_block
from .hr_module import get_hrnet_encoder
from .maf_extractor import MAF_Extractor, Mesh_Sampler
from .pose_resnet import get_resnet_encoder
from .res_module import IUV_predict_layer
from .smpl import (
SMPL,
SMPL_MEAN_PARAMS,
SMPL_MODEL_DIR,
SMPL_Family,
get_partial_smpl,
)
logger = logging.getLogger(__name__)
BN_MOMENTUM = 0.1
class Regressor(nn.Module):
def __init__(
self,
feat_dim,
smpl_mean_params,
use_cam_feats=False,
feat_dim_hand=0,
feat_dim_face=0,
bhf_names=['body'],
smpl_models={}
):
super().__init__()
npose = 24 * 6
shape_dim = 10
cam_dim = 3
hand_dim = 15 * 6
face_dim = 3 * 6 + 10
self.body_feat_dim = feat_dim
self.smpl_mode = (cfg.MODEL.MESH_MODEL == 'smpl')
self.smplx_mode = (cfg.MODEL.MESH_MODEL == 'smplx')
self.use_cam_feats = use_cam_feats
cam_feat_len = 4 if self.use_cam_feats else 0
self.bhf_names = bhf_names
self.hand_only_mode = (cfg.TRAIN.BHF_MODE == 'hand_only')
self.face_only_mode = (cfg.TRAIN.BHF_MODE == 'face_only')
self.body_hand_mode = (cfg.TRAIN.BHF_MODE == 'body_hand')
self.full_body_mode = (cfg.TRAIN.BHF_MODE == 'full_body')
# if self.use_cam_feats:
# assert cfg.MODEL.USE_IWP_CAM is False
if 'body' in self.bhf_names:
self.fc1 = nn.Linear(feat_dim + npose + cam_feat_len + shape_dim + cam_dim, 1024)
self.drop1 = nn.Dropout()
self.fc2 = nn.Linear(1024, 1024)
self.drop2 = nn.Dropout()
self.decpose = nn.Linear(1024, npose)
self.decshape = nn.Linear(1024, 10)
self.deccam = nn.Linear(1024, 3)
nn.init.xavier_uniform_(self.decpose.weight, gain=0.01)
nn.init.xavier_uniform_(self.decshape.weight, gain=0.01)
nn.init.xavier_uniform_(self.deccam.weight, gain=0.01)
if not self.smpl_mode:
if self.hand_only_mode:
self.part_names = ['rhand']
elif self.face_only_mode:
self.part_names = ['face']
elif self.body_hand_mode:
self.part_names = ['lhand', 'rhand']
elif self.full_body_mode:
self.part_names = ['lhand', 'rhand', 'face']
else:
self.part_names = []
if 'rhand' in self.part_names:
# self.fc1_hand = nn.Linear(feat_dim_hand + hand_dim + rh_orient_dim + rh_shape_dim + rh_cam_dim, 1024)
self.fc1_hand = nn.Linear(feat_dim_hand + hand_dim, 1024)
self.drop1_hand = nn.Dropout()
self.fc2_hand = nn.Linear(1024, 1024)
self.drop2_hand = nn.Dropout()
# self.declhand = nn.Linear(1024, 15*6)
self.decrhand = nn.Linear(1024, 15 * 6)
# nn.init.xavier_uniform_(self.declhand.weight, gain=0.01)
nn.init.xavier_uniform_(self.decrhand.weight, gain=0.01)
if cfg.MODEL.MESH_MODEL == 'mano' or cfg.MODEL.PyMAF.OPT_WRIST:
rh_cam_dim = 3
rh_orient_dim = 6
rh_shape_dim = 10
self.fc3_hand = nn.Linear(
1024 + rh_orient_dim + rh_shape_dim + rh_cam_dim, 1024
)
self.drop3_hand = nn.Dropout()
self.decshape_rhand = nn.Linear(1024, 10)
self.decorient_rhand = nn.Linear(1024, 6)
self.deccam_rhand = nn.Linear(1024, 3)
nn.init.xavier_uniform_(self.decshape_rhand.weight, gain=0.01)
nn.init.xavier_uniform_(self.decorient_rhand.weight, gain=0.01)
nn.init.xavier_uniform_(self.deccam_rhand.weight, gain=0.01)
if 'face' in self.part_names:
self.fc1_face = nn.Linear(feat_dim_face + face_dim, 1024)
self.drop1_face = nn.Dropout()
self.fc2_face = nn.Linear(1024, 1024)
self.drop2_face = nn.Dropout()
self.dechead = nn.Linear(1024, 3 * 6)
self.decexp = nn.Linear(1024, 10)
nn.init.xavier_uniform_(self.dechead.weight, gain=0.01)
nn.init.xavier_uniform_(self.decexp.weight, gain=0.01)
if cfg.MODEL.MESH_MODEL == 'flame':
rh_cam_dim = 3
rh_orient_dim = 6
rh_shape_dim = 10
self.fc3_face = nn.Linear(
1024 + rh_orient_dim + rh_shape_dim + rh_cam_dim, 1024
)
self.drop3_face = nn.Dropout()
self.decshape_face = nn.Linear(1024, 10)
self.decorient_face = nn.Linear(1024, 6)
self.deccam_face = nn.Linear(1024, 3)
nn.init.xavier_uniform_(self.decshape_face.weight, gain=0.01)
nn.init.xavier_uniform_(self.decorient_face.weight, gain=0.01)
nn.init.xavier_uniform_(self.deccam_face.weight, gain=0.01)
if self.smplx_mode and cfg.MODEL.PyMAF.PRED_VIS_H:
self.fc1_vis = nn.Linear(1024 + 1024 + 1024, 1024)
self.drop1_vis = nn.Dropout()
self.fc2_vis = nn.Linear(1024, 1024)
self.drop2_vis = nn.Dropout()
self.decvis = nn.Linear(1024, 2)
nn.init.xavier_uniform_(self.decvis.weight, gain=0.01)
if 'body' in smpl_models:
self.smpl = smpl_models['body']
if 'hand' in smpl_models:
self.mano = smpl_models['hand']
if 'face' in smpl_models:
self.flame = smpl_models['face']
if cfg.MODEL.PyMAF.OPT_WRIST:
self.body_model = SMPL(model_path=SMPL_MODEL_DIR, batch_size=64, create_transl=False)
mean_params = np.load(smpl_mean_params)
init_pose = torch.from_numpy(mean_params['pose'][:]).unsqueeze(0)
init_shape = torch.from_numpy(mean_params['shape'][:].astype('float32')).unsqueeze(0)
init_cam = torch.from_numpy(mean_params['cam']).unsqueeze(0)
self.register_buffer('init_pose', init_pose)
self.register_buffer('init_shape', init_shape)
self.register_buffer('init_cam', init_cam)
self.register_buffer('init_orient', init_pose[:, :6])
self.flip_vector = torch.ones((1, 9), dtype=torch.float32)
self.flip_vector[:, [1, 2, 3, 6]] *= -1
self.flip_vector = self.flip_vector.reshape(1, 3, 3)
if not self.smpl_mode:
lhand_mean_rot6d = rotmat_to_rot6d(
batch_rodrigues(self.smpl.model.model_neutral.left_hand_mean.view(-1, 3)).view([
-1, 3, 3
])
)
rhand_mean_rot6d = rotmat_to_rot6d(
batch_rodrigues(self.smpl.model.model_neutral.right_hand_mean.view(-1, 3)).view([
-1, 3, 3
])
)
init_lhand = lhand_mean_rot6d.reshape(-1).unsqueeze(0)
init_rhand = rhand_mean_rot6d.reshape(-1).unsqueeze(0)
# init_hand = torch.cat([init_lhand, init_rhand]).unsqueeze(0)
init_face = rotmat_to_rot6d(torch.stack([torch.eye(3)] * 3)).reshape(-1).unsqueeze(0)
init_exp = torch.zeros(10).unsqueeze(0)
if self.smplx_mode or 'hand' in bhf_names:
# init_hand = torch.cat([init_lhand, init_rhand]).unsqueeze(0)
self.register_buffer('init_lhand', init_lhand)
self.register_buffer('init_rhand', init_rhand)
if self.smplx_mode or 'face' in bhf_names:
self.register_buffer('init_face', init_face)
self.register_buffer('init_exp', init_exp)
def forward(
self,
x=None,
n_iter=1,
J_regressor=None,
rw_cam={},
init_mode=False,
global_iter=-1,
**kwargs
):
if x is not None:
batch_size = x.shape[0]
else:
if 'xc_rhand' in kwargs:
batch_size = kwargs['xc_rhand'].shape[0]
elif 'xc_face' in kwargs:
batch_size = kwargs['xc_face'].shape[0]
if 'body' in self.bhf_names:
if 'init_pose' not in kwargs:
kwargs['init_pose'] = self.init_pose.expand(batch_size, -1)
if 'init_shape' not in kwargs:
kwargs['init_shape'] = self.init_shape.expand(batch_size, -1)
if 'init_cam' not in kwargs:
kwargs['init_cam'] = self.init_cam.expand(batch_size, -1)
pred_cam = kwargs['init_cam']
pred_pose = kwargs['init_pose']
pred_shape = kwargs['init_shape']
if self.full_body_mode or self.body_hand_mode:
if cfg.MODEL.PyMAF.OPT_WRIST:
pred_rotmat_body = rot6d_to_rotmat(
pred_pose.reshape(batch_size, -1, 6)
) # .view(batch_size, 24, 3, 3)
if cfg.MODEL.PyMAF.PRED_VIS_H:
pred_vis_hands = None
# if self.full_body_mode or 'hand' in self.bhf_names:
if self.smplx_mode or 'hand' in self.bhf_names:
if 'init_lhand' not in kwargs:
# kwargs['init_lhand'] = self.init_lhand.expand(batch_size, -1)
# init with **right** hand pose
kwargs['init_lhand'] = self.init_rhand.expand(batch_size, -1)
if 'init_rhand' not in kwargs:
kwargs['init_rhand'] = self.init_rhand.expand(batch_size, -1)
pred_lhand, pred_rhand = kwargs['init_lhand'], kwargs['init_rhand']
if cfg.MODEL.MESH_MODEL == 'mano' or cfg.MODEL.PyMAF.OPT_WRIST:
if 'init_orient_rh' not in kwargs:
kwargs['init_orient_rh'] = self.init_orient.expand(batch_size, -1)
if 'init_shape_rh' not in kwargs:
kwargs['init_shape_rh'] = self.init_shape.expand(batch_size, -1)
if 'init_cam_rh' not in kwargs:
kwargs['init_cam_rh'] = self.init_cam.expand(batch_size, -1)
pred_orient_rh = kwargs['init_orient_rh']
pred_shape_rh = kwargs['init_shape_rh']
pred_cam_rh = kwargs['init_cam_rh']
if cfg.MODEL.PyMAF.OPT_WRIST:
if 'init_orient_lh' not in kwargs:
kwargs['init_orient_lh'] = self.init_orient.expand(batch_size, -1)
if 'init_shape_lh' not in kwargs:
kwargs['init_shape_lh'] = self.init_shape.expand(batch_size, -1)
if 'init_cam_lh' not in kwargs:
kwargs['init_cam_lh'] = self.init_cam.expand(batch_size, -1)
pred_orient_lh = kwargs['init_orient_lh']
pred_shape_lh = kwargs['init_shape_lh']
pred_cam_lh = kwargs['init_cam_lh']
if cfg.MODEL.MESH_MODEL == 'mano':
pred_cam = torch.cat([pred_cam_rh[:, 0:1] * 10., pred_cam_rh[:, 1:]], dim=1)
# if self.full_body_mode or 'face' in self.bhf_names:
if self.smplx_mode or 'face' in self.bhf_names:
if 'init_face' not in kwargs:
kwargs['init_face'] = self.init_face.expand(batch_size, -1)
if 'init_hand' not in kwargs:
kwargs['init_exp'] = self.init_exp.expand(batch_size, -1)
pred_face = kwargs['init_face']
pred_exp = kwargs['init_exp']
if cfg.MODEL.MESH_MODEL == 'flame' or cfg.MODEL.PyMAF.OPT_WRIST:
if 'init_orient_fa' not in kwargs:
kwargs['init_orient_fa'] = self.init_orient.expand(batch_size, -1)
pred_orient_fa = kwargs['init_orient_fa']
if 'init_shape_fa' not in kwargs:
kwargs['init_shape_fa'] = self.init_shape.expand(batch_size, -1)
if 'init_cam_fa' not in kwargs:
kwargs['init_cam_fa'] = self.init_cam.expand(batch_size, -1)
pred_shape_fa = kwargs['init_shape_fa']
pred_cam_fa = kwargs['init_cam_fa']
if cfg.MODEL.MESH_MODEL == 'flame':
pred_cam = torch.cat([pred_cam_fa[:, 0:1] * 10., pred_cam_fa[:, 1:]], dim=1)
if not init_mode:
for i in range(n_iter):
if 'body' in self.bhf_names:
xc = torch.cat([x, pred_pose, pred_shape, pred_cam], 1)
if self.use_cam_feats:
if cfg.MODEL.USE_IWP_CAM:
# for IWP camera, simply use pre-defined values
vfov = torch.ones((batch_size, 1)).to(xc) * 0.8
crop_ratio = torch.ones((batch_size, 1)).to(xc) * 0.3
crop_center = torch.ones((batch_size, 2)).to(xc) * 0.5
else:
vfov = rw_cam['vfov'][:, None]
crop_ratio = rw_cam['crop_ratio'][:, None]
crop_center = rw_cam['bbox_center'] / torch.cat([
rw_cam['img_w'][:, None], rw_cam['img_h'][:, None]
], 1)
xc = torch.cat([xc, vfov, crop_ratio, crop_center], 1)
xc = self.fc1(xc)
xc = self.drop1(xc)
xc = self.fc2(xc)
xc = self.drop2(xc)
pred_cam = self.deccam(xc) + pred_cam
pred_pose = self.decpose(xc) + pred_pose
pred_shape = self.decshape(xc) + pred_shape
if not self.smpl_mode:
if self.hand_only_mode:
xc_rhand = kwargs['xc_rhand']
xc_rhand = torch.cat([xc_rhand, pred_rhand], 1)
elif self.face_only_mode:
xc_face = kwargs['xc_face']
xc_face = torch.cat([xc_face, pred_face, pred_exp], 1)
elif self.body_hand_mode:
xc_lhand, xc_rhand = kwargs['xc_lhand'], kwargs['xc_rhand']
xc_lhand = torch.cat([xc_lhand, pred_lhand], 1)
xc_rhand = torch.cat([xc_rhand, pred_rhand], 1)
elif self.full_body_mode:
xc_lhand, xc_rhand, xc_face = kwargs['xc_lhand'], kwargs['xc_rhand'
], kwargs['xc_face']
xc_lhand = torch.cat([xc_lhand, pred_lhand], 1)
xc_rhand = torch.cat([xc_rhand, pred_rhand], 1)
xc_face = torch.cat([xc_face, pred_face, pred_exp], 1)
if 'lhand' in self.part_names:
xc_lhand = self.drop1_hand(self.fc1_hand(xc_lhand))
xc_lhand = self.drop2_hand(self.fc2_hand(xc_lhand))
pred_lhand = self.decrhand(xc_lhand) + pred_lhand
if cfg.MODEL.PyMAF.OPT_WRIST:
xc_lhand = torch.cat([
xc_lhand, pred_shape_lh, pred_orient_lh, pred_cam_lh
], 1)
xc_lhand = self.drop3_hand(self.fc3_hand(xc_lhand))
pred_shape_lh = self.decshape_rhand(xc_lhand) + pred_shape_lh
pred_orient_lh = self.decorient_rhand(xc_lhand) + pred_orient_lh
pred_cam_lh = self.deccam_rhand(xc_lhand) + pred_cam_lh
if 'rhand' in self.part_names:
xc_rhand = self.drop1_hand(self.fc1_hand(xc_rhand))
xc_rhand = self.drop2_hand(self.fc2_hand(xc_rhand))
pred_rhand = self.decrhand(xc_rhand) + pred_rhand
if cfg.MODEL.MESH_MODEL == 'mano' or cfg.MODEL.PyMAF.OPT_WRIST:
xc_rhand = torch.cat([
xc_rhand, pred_shape_rh, pred_orient_rh, pred_cam_rh
], 1)
xc_rhand = self.drop3_hand(self.fc3_hand(xc_rhand))
pred_shape_rh = self.decshape_rhand(xc_rhand) + pred_shape_rh
pred_orient_rh = self.decorient_rhand(xc_rhand) + pred_orient_rh
pred_cam_rh = self.deccam_rhand(xc_rhand) + pred_cam_rh
if cfg.MODEL.MESH_MODEL == 'mano':
pred_cam = torch.cat([
pred_cam_rh[:, 0:1] * 10., pred_cam_rh[:, 1:] / 10.
],
dim=1)
if 'face' in self.part_names:
xc_face = self.drop1_face(self.fc1_face(xc_face))
xc_face = self.drop2_face(self.fc2_face(xc_face))
pred_face = self.dechead(xc_face) + pred_face
pred_exp = self.decexp(xc_face) + pred_exp
if cfg.MODEL.MESH_MODEL == 'flame':
xc_face = torch.cat([
xc_face, pred_shape_fa, pred_orient_fa, pred_cam_fa
], 1)
xc_face = self.drop3_face(self.fc3_face(xc_face))
pred_shape_fa = self.decshape_face(xc_face) + pred_shape_fa
pred_orient_fa = self.decorient_face(xc_face) + pred_orient_fa
pred_cam_fa = self.deccam_face(xc_face) + pred_cam_fa
if cfg.MODEL.MESH_MODEL == 'flame':
pred_cam = torch.cat([
pred_cam_fa[:, 0:1] * 10., pred_cam_fa[:, 1:] / 10.
],
dim=1)
if self.full_body_mode or self.body_hand_mode:
if cfg.MODEL.PyMAF.PRED_VIS_H:
xc_vis = torch.cat([xc, xc_lhand, xc_rhand], 1)
xc_vis = self.drop1_vis(self.fc1_vis(xc_vis))
xc_vis = self.drop2_vis(self.fc2_vis(xc_vis))
pred_vis_hands = self.decvis(xc_vis)
pred_vis_lhand = pred_vis_hands[:, 0] > cfg.MODEL.PyMAF.HAND_VIS_TH
pred_vis_rhand = pred_vis_hands[:, 1] > cfg.MODEL.PyMAF.HAND_VIS_TH
if cfg.MODEL.PyMAF.OPT_WRIST:
pred_rotmat_body = rot6d_to_rotmat(
pred_pose.reshape(batch_size, -1, 6)
) # .view(batch_size, 24, 3, 3)
pred_lwrist = pred_rotmat_body[:, 20]
pred_rwrist = pred_rotmat_body[:, 21]
pred_gl_body, body_joints = self.body_model.get_global_rotation(
global_orient=pred_rotmat_body[:, 0:1],
body_pose=pred_rotmat_body[:, 1:]
)
pred_gl_lelbow = pred_gl_body[:, 18]
pred_gl_relbow = pred_gl_body[:, 19]
target_gl_lwrist = rot6d_to_rotmat(
pred_orient_lh.reshape(batch_size, -1, 6)
)
target_gl_lwrist *= self.flip_vector.to(target_gl_lwrist.device)
target_gl_rwrist = rot6d_to_rotmat(
pred_orient_rh.reshape(batch_size, -1, 6)
)
opt_lwrist = torch.bmm(pred_gl_lelbow.transpose(1, 2), target_gl_lwrist)
opt_rwrist = torch.bmm(pred_gl_relbow.transpose(1, 2), target_gl_rwrist)
if cfg.MODEL.PyMAF.ADAPT_INTEGR:
# if cfg.MODEL.PyMAF.ADAPT_INTEGR and global_iter == (cfg.MODEL.PyMAF.N_ITER - 1):
tpose_joints = self.smpl.get_tpose(betas=pred_shape)
lelbow_twist_axis = nn.functional.normalize(
tpose_joints[:, 20] - tpose_joints[:, 18], dim=1
)
relbow_twist_axis = nn.functional.normalize(
tpose_joints[:, 21] - tpose_joints[:, 19], dim=1
)
lelbow_twist, lelbow_twist_angle = compute_twist_rotation(
opt_lwrist, lelbow_twist_axis
)
relbow_twist, relbow_twist_angle = compute_twist_rotation(
opt_rwrist, relbow_twist_axis
)
min_angle = -0.4 * float(np.pi)
max_angle = 0.4 * float(np.pi)
lelbow_twist_angle[lelbow_twist_angle == torch.
clamp(lelbow_twist_angle, min_angle, max_angle)
] = 0
relbow_twist_angle[relbow_twist_angle == torch.
clamp(relbow_twist_angle, min_angle, max_angle)
] = 0
lelbow_twist_angle[lelbow_twist_angle > max_angle] -= max_angle
lelbow_twist_angle[lelbow_twist_angle < min_angle] -= min_angle
relbow_twist_angle[relbow_twist_angle > max_angle] -= max_angle
relbow_twist_angle[relbow_twist_angle < min_angle] -= min_angle
lelbow_twist = batch_rodrigues(
lelbow_twist_axis * lelbow_twist_angle
)
relbow_twist = batch_rodrigues(
relbow_twist_axis * relbow_twist_angle
)
opt_lwrist = torch.bmm(lelbow_twist.transpose(1, 2), opt_lwrist)
opt_rwrist = torch.bmm(relbow_twist.transpose(1, 2), opt_rwrist)
# left elbow: 18
opt_lelbow = torch.bmm(pred_rotmat_body[:, 18], lelbow_twist)
# right elbow: 19
opt_relbow = torch.bmm(pred_rotmat_body[:, 19], relbow_twist)
if cfg.MODEL.PyMAF.PRED_VIS_H and global_iter == (
cfg.MODEL.PyMAF.N_ITER - 1
):
opt_lwrist_filtered = [
opt_lwrist[_i]
if pred_vis_lhand[_i] else pred_rotmat_body[_i, 20]
for _i in range(batch_size)
]
opt_rwrist_filtered = [
opt_rwrist[_i]
if pred_vis_rhand[_i] else pred_rotmat_body[_i, 21]
for _i in range(batch_size)
]
opt_lelbow_filtered = [
opt_lelbow[_i]
if pred_vis_lhand[_i] else pred_rotmat_body[_i, 18]
for _i in range(batch_size)
]
opt_relbow_filtered = [
opt_relbow[_i]
if pred_vis_rhand[_i] else pred_rotmat_body[_i, 19]
for _i in range(batch_size)
]
opt_lwrist = torch.stack(opt_lwrist_filtered)
opt_rwrist = torch.stack(opt_rwrist_filtered)
opt_lelbow = torch.stack(opt_lelbow_filtered)
opt_relbow = torch.stack(opt_relbow_filtered)
pred_rotmat_body = torch.cat([
pred_rotmat_body[:, :18],
opt_lelbow.unsqueeze(1),
opt_relbow.unsqueeze(1),
opt_lwrist.unsqueeze(1),
opt_rwrist.unsqueeze(1), pred_rotmat_body[:, 22:]
], 1)
else:
if cfg.MODEL.PyMAF.PRED_VIS_H and global_iter == (
cfg.MODEL.PyMAF.N_ITER - 1
):
opt_lwrist_filtered = [
opt_lwrist[_i]
if pred_vis_lhand[_i] else pred_rotmat_body[_i, 20]
for _i in range(batch_size)
]
opt_rwrist_filtered = [
opt_rwrist[_i]
if pred_vis_rhand[_i] else pred_rotmat_body[_i, 21]
for _i in range(batch_size)
]
opt_lwrist = torch.stack(opt_lwrist_filtered)
opt_rwrist = torch.stack(opt_rwrist_filtered)
pred_rotmat_body = torch.cat([
pred_rotmat_body[:, :20],
opt_lwrist.unsqueeze(1),
opt_rwrist.unsqueeze(1), pred_rotmat_body[:, 22:]
], 1)
if self.hand_only_mode:
pred_rotmat_rh = rot6d_to_rotmat(
torch.cat([pred_orient_rh, pred_rhand], dim=1).reshape(batch_size, -1, 6)
) # .view(batch_size, 16, 3, 3)
assert pred_rotmat_rh.shape[1] == 1 + 15
elif self.face_only_mode:
pred_rotmat_fa = rot6d_to_rotmat(
torch.cat([pred_orient_fa, pred_face], dim=1).reshape(batch_size, -1, 6)
) # .view(batch_size, 16, 3, 3)
assert pred_rotmat_fa.shape[1] == 1 + 3
elif self.full_body_mode or self.body_hand_mode:
if cfg.MODEL.PyMAF.OPT_WRIST:
pred_rotmat = pred_rotmat_body
else:
pred_rotmat = rot6d_to_rotmat(
pred_pose.reshape(batch_size, -1, 6)
) # .view(batch_size, 24, 3, 3)
assert pred_rotmat.shape[1] == 24
else:
pred_rotmat = rot6d_to_rotmat(
pred_pose.reshape(batch_size, -1, 6)
) # .view(batch_size, 24, 3, 3)
assert pred_rotmat.shape[1] == 24
# if self.full_body_mode:
if self.smplx_mode:
if cfg.MODEL.PyMAF.PRED_VIS_H and global_iter == (cfg.MODEL.PyMAF.N_ITER - 1):
pred_lhand_filtered = [
pred_lhand[_i] if pred_vis_lhand[_i] else self.init_rhand[0]
for _i in range(batch_size)
]
pred_rhand_filtered = [
pred_rhand[_i] if pred_vis_rhand[_i] else self.init_rhand[0]
for _i in range(batch_size)
]
pred_lhand_filtered = torch.stack(pred_lhand_filtered)
pred_rhand_filtered = torch.stack(pred_rhand_filtered)
pred_hf6d = torch.cat([pred_lhand_filtered, pred_rhand_filtered, pred_face],
dim=1).reshape(batch_size, -1, 6)
else:
pred_hf6d = torch.cat([pred_lhand, pred_rhand, pred_face],
dim=1).reshape(batch_size, -1, 6)
pred_hfrotmat = rot6d_to_rotmat(pred_hf6d)
assert pred_hfrotmat.shape[1] == (15 * 2 + 3)
# flip left hand pose
pred_lhand_rotmat = pred_hfrotmat[:, :15] * self.flip_vector.to(pred_hfrotmat.device
).unsqueeze(0)
pred_rhand_rotmat = pred_hfrotmat[:, 15:30]
pred_face_rotmat = pred_hfrotmat[:, 30:]
if self.hand_only_mode:
pred_output = self.mano(
betas=pred_shape_rh,
right_hand_pose=pred_rotmat_rh[:, 1:],
global_orient=pred_rotmat_rh[:, 0].unsqueeze(1),
pose2rot=False,
)
elif self.face_only_mode:
pred_output = self.flame(
betas=pred_shape_fa,
global_orient=pred_rotmat_fa[:, 0].unsqueeze(1),
jaw_pose=pred_rotmat_fa[:, 1:2],
leye_pose=pred_rotmat_fa[:, 2:3],
reye_pose=pred_rotmat_fa[:, 3:4],
expression=pred_exp,
pose2rot=False,
)
else:
smplx_kwargs = {}
# if self.full_body_mode:
if self.smplx_mode:
smplx_kwargs['left_hand_pose'] = pred_lhand_rotmat
smplx_kwargs['right_hand_pose'] = pred_rhand_rotmat
smplx_kwargs['jaw_pose'] = pred_face_rotmat[:, 0:1]
smplx_kwargs['leye_pose'] = pred_face_rotmat[:, 1:2]
smplx_kwargs['reye_pose'] = pred_face_rotmat[:, 2:3]
smplx_kwargs['expression'] = pred_exp
pred_output = self.smpl(
betas=pred_shape,
body_pose=pred_rotmat[:, 1:],
global_orient=pred_rotmat[:, 0].unsqueeze(1),
pose2rot=False,
**smplx_kwargs,
)
pred_vertices = pred_output.vertices
pred_joints = pred_output.joints
if self.hand_only_mode:
pred_joints_full = pred_output.rhand_joints
elif self.face_only_mode:
pred_joints_full = pred_output.face_joints
elif self.smplx_mode:
pred_joints_full = torch.cat([
pred_joints, pred_output.lhand_joints, pred_output.rhand_joints,
pred_output.face_joints, pred_output.lfoot_joints, pred_output.rfoot_joints
],
dim=1)
else:
pred_joints_full = pred_joints
pred_keypoints_2d = projection(
pred_joints_full, {**rw_cam, 'cam_sxy': pred_cam}, iwp_mode=cfg.MODEL.USE_IWP_CAM
)
if cfg.MODEL.USE_IWP_CAM:
# Normalize keypoints to [-1,1]
pred_keypoints_2d = pred_keypoints_2d / (224. / 2.)
else:
pred_keypoints_2d = j2d_processing(pred_keypoints_2d, rw_cam['kps_transf'])
len_b_kp = len(constants.JOINT_NAMES)
output = {}
if self.smpl_mode or self.smplx_mode:
if J_regressor is not None:
kp_3d = torch.matmul(J_regressor, pred_vertices)
pred_pelvis = kp_3d[:, [0], :].clone()
kp_3d = kp_3d[:, constants.H36M_TO_J14, :]
kp_3d = kp_3d - pred_pelvis
else:
kp_3d = pred_joints
pose = rotation_matrix_to_angle_axis(pred_rotmat.reshape(-1, 3, 3)).reshape(-1, 72)
output.update({
'theta': torch.cat([pred_cam, pred_shape, pose], dim=1),
'verts': pred_vertices,
'kp_2d': pred_keypoints_2d[:, :len_b_kp],
'kp_3d': kp_3d,
'pred_joints': pred_joints,
'smpl_kp_3d': pred_output.smpl_joints,
'rotmat': pred_rotmat,
'pred_cam': pred_cam,
'pred_shape': pred_shape,
'pred_pose': pred_pose,
})
# if self.full_body_mode:
if self.smplx_mode:
# assert pred_keypoints_2d.shape[1] == 144
len_h_kp = len(constants.HAND_NAMES)
len_f_kp = len(constants.FACIAL_LANDMARKS)
len_feet_kp = 2 * len(constants.FOOT_NAMES)
output.update({
'smplx_verts':
pred_output.smplx_vertices if cfg.MODEL.EVAL_MODE else None,
'pred_lhand':
pred_lhand,
'pred_rhand':
pred_rhand,
'pred_face':
pred_face,
'pred_exp':
pred_exp,
'verts_lh':
pred_output.lhand_vertices,
'verts_rh':
pred_output.rhand_vertices,
# 'pred_arm_rotmat': pred_arm_rotmat,
# 'pred_hfrotmat': pred_hfrotmat,
'pred_lhand_rotmat':
pred_lhand_rotmat,
'pred_rhand_rotmat':
pred_rhand_rotmat,
'pred_face_rotmat':
pred_face_rotmat,
'pred_lhand_kp3d':
pred_output.lhand_joints,
'pred_rhand_kp3d':
pred_output.rhand_joints,
'pred_face_kp3d':
pred_output.face_joints,
'pred_lhand_kp2d':
pred_keypoints_2d[:, len_b_kp:len_b_kp + len_h_kp],
'pred_rhand_kp2d':
pred_keypoints_2d[:, len_b_kp + len_h_kp:len_b_kp + len_h_kp * 2],
'pred_face_kp2d':
pred_keypoints_2d[:,
len_b_kp + len_h_kp * 2:len_b_kp + len_h_kp * 2 + len_f_kp],
'pred_feet_kp2d':
pred_keypoints_2d[:, len_b_kp + len_h_kp * 2 + len_f_kp:len_b_kp +
len_h_kp * 2 + len_f_kp + len_feet_kp],
})
if cfg.MODEL.PyMAF.OPT_WRIST:
output.update({
'pred_orient_lh': pred_orient_lh,
'pred_shape_lh': pred_shape_lh,
'pred_orient_rh': pred_orient_rh,
'pred_shape_rh': pred_shape_rh,
'pred_cam_fa': pred_cam_fa,
'pred_cam_lh': pred_cam_lh,
'pred_cam_rh': pred_cam_rh,
})
if cfg.MODEL.PyMAF.PRED_VIS_H:
output.update({'pred_vis_hands': pred_vis_hands})
elif self.hand_only_mode:
# hand mesh out
assert pred_keypoints_2d.shape[1] == 21
output.update({
'theta': pred_cam,
'pred_cam': pred_cam,
'pred_rhand': pred_rhand,
'pred_rhand_rotmat': pred_rotmat_rh[:, 1:],
'pred_orient_rh': pred_orient_rh,
'pred_orient_rh_rotmat': pred_rotmat_rh[:, 0],
'verts_rh': pred_output.rhand_vertices,
'pred_cam_rh': pred_cam_rh,
'pred_shape_rh': pred_shape_rh,
'pred_rhand_kp3d': pred_output.rhand_joints,
'pred_rhand_kp2d': pred_keypoints_2d,
})
elif self.face_only_mode:
# face mesh out
assert pred_keypoints_2d.shape[1] == 68
output.update({
'theta': pred_cam,
'pred_cam': pred_cam,
'pred_face': pred_face,
'pred_exp': pred_exp,
'pred_face_rotmat': pred_rotmat_fa[:, 1:],
'pred_orient_fa': pred_orient_fa,
'pred_orient_fa_rotmat': pred_rotmat_fa[:, 0],
'verts_fa': pred_output.flame_vertices,
'pred_cam_fa': pred_cam_fa,
'pred_shape_fa': pred_shape_fa,
'pred_face_kp3d': pred_output.face_joints,
'pred_face_kp2d': pred_keypoints_2d,
})
return output
def get_attention_modules(
module_keys, img_feature_dim_list, hidden_feat_dim, n_iter, num_attention_heads=1
):
align_attention = nn.ModuleDict()
for k in module_keys:
align_attention[k] = nn.ModuleList()
for i in range(n_iter):
align_attention[k].append(
get_att_block(
img_feature_dim=img_feature_dim_list[k][i],
hidden_feat_dim=hidden_feat_dim,
num_attention_heads=num_attention_heads
)
)
return align_attention
def get_fusion_modules(module_keys, ma_feat_dim, grid_feat_dim, n_iter, out_feat_len):
feat_fusion = nn.ModuleDict()
for k in module_keys:
feat_fusion[k] = nn.ModuleList()
for i in range(n_iter):
feat_fusion[k].append(nn.Linear(grid_feat_dim + ma_feat_dim[k], out_feat_len[k]))
return feat_fusion
class PyMAF(nn.Module):
""" PyMAF based Regression Network for Human Mesh Recovery / Full-body Mesh Recovery
PyMAF: 3D Human Pose and Shape Regression with Pyramidal Mesh Alignment Feedback Loop, in ICCV, 2021
PyMAF-X: Towards Well-aligned Full-body Model Regression from Monocular Images, arXiv:2207.06400, 2022
"""
def __init__(
self, smpl_mean_params=SMPL_MEAN_PARAMS, pretrained=True, device=torch.device('cuda')
):
super().__init__()
self.device = device
self.smpl_mode = (cfg.MODEL.MESH_MODEL == 'smpl')
self.smplx_mode = (cfg.MODEL.MESH_MODEL == 'smplx')
assert cfg.TRAIN.BHF_MODE in [
'body_only', 'hand_only', 'face_only', 'body_hand', 'full_body'
]
self.hand_only_mode = (cfg.TRAIN.BHF_MODE == 'hand_only')
self.face_only_mode = (cfg.TRAIN.BHF_MODE == 'face_only')
self.body_hand_mode = (cfg.TRAIN.BHF_MODE == 'body_hand')
self.full_body_mode = (cfg.TRAIN.BHF_MODE == 'full_body')
bhf_names = []
if cfg.TRAIN.BHF_MODE in ['body_only', 'body_hand', 'full_body']:
bhf_names.append('body')
if cfg.TRAIN.BHF_MODE in ['hand_only', 'body_hand', 'full_body']:
bhf_names.append('hand')
if cfg.TRAIN.BHF_MODE in ['face_only', 'full_body']:
bhf_names.append('face')
self.bhf_names = bhf_names
self.part_module_names = {'body': {}, 'hand': {}, 'face': {}, 'link': {}}
# the limb parts need to be handled
if self.hand_only_mode:
self.part_names = ['rhand']
elif self.face_only_mode:
self.part_names = ['face']
elif self.body_hand_mode:
self.part_names = ['lhand', 'rhand']
elif self.full_body_mode:
self.part_names = ['lhand', 'rhand', 'face']
else:
self.part_names = []
# joint index info
if not self.smpl_mode:
h_root_idx = constants.HAND_NAMES.index('wrist')
h_idx = constants.HAND_NAMES.index('middle1')
f_idx = constants.FACIAL_LANDMARKS.index('nose_middle')
self.hf_center_idx = {'lhand': h_idx, 'rhand': h_idx, 'face': f_idx}
self.hf_root_idx = {'lhand': h_root_idx, 'rhand': h_root_idx, 'face': f_idx}
lh_idx_coco = constants.COCO_KEYPOINTS.index('left_wrist')
rh_idx_coco = constants.COCO_KEYPOINTS.index('right_wrist')
f_idx_coco = constants.COCO_KEYPOINTS.index('nose')
self.hf_root_idx_coco = {'lhand': lh_idx_coco, 'rhand': rh_idx_coco, 'face': f_idx_coco}
# create parametric mesh models
self.smpl_family = {}
if self.hand_only_mode and cfg.MODEL.MESH_MODEL == 'mano':
self.smpl_family['hand'] = SMPL_Family(model_type='mano')
self.smpl_family['body'] = SMPL_Family(model_type='smplx')
elif self.face_only_mode and cfg.MODEL.MESH_MODEL == 'flame':
self.smpl_family['face'] = SMPL_Family(model_type='flame')
self.smpl_family['body'] = SMPL_Family(model_type='smplx')
else:
self.smpl_family['body'] = SMPL_Family(
model_type=cfg.MODEL.MESH_MODEL, all_gender=cfg.MODEL.ALL_GENDER
)
self.init_mesh_output = None
self.batch_size = 1
self.encoders = nn.ModuleDict()
self.global_mode = not cfg.MODEL.PyMAF.MAF_ON
# build encoders
global_feat_dim = 2048
bhf_ma_feat_dim = {}
# encoder for the body part
if 'body' in bhf_names:
# if self.smplx_mode or 'hr' in cfg.MODEL.PyMAF.BACKBONE:
if cfg.MODEL.PyMAF.BACKBONE == 'res50':
body_encoder = get_resnet_encoder(
cfg, init_weight=(not cfg.MODEL.EVAL_MODE), global_mode=self.global_mode
)
body_sfeat_dim = list(cfg.POSE_RES_MODEL.EXTRA.NUM_DECONV_FILTERS)
elif cfg.MODEL.PyMAF.BACKBONE == 'hr48':
body_encoder = get_hrnet_encoder(
cfg, init_weight=(not cfg.MODEL.EVAL_MODE), global_mode=self.global_mode
)
body_sfeat_dim = list(cfg.HR_MODEL.EXTRA.STAGE4.NUM_CHANNELS)
body_sfeat_dim.reverse()
body_sfeat_dim = body_sfeat_dim[1:]
else:
raise NotImplementedError
self.encoders['body'] = body_encoder
self.part_module_names['body'].update({'encoders.body': self.encoders['body']})
self.mesh_sampler = Mesh_Sampler(type='smpl')
self.part_module_names['body'].update({'mesh_sampler': self.mesh_sampler})
if not cfg.MODEL.PyMAF.GRID_FEAT:
ma_feat_dim = self.mesh_sampler.Dmap.shape[0] * cfg.MODEL.PyMAF.MLP_DIM[-1]
else:
ma_feat_dim = 0
bhf_ma_feat_dim['body'] = ma_feat_dim
dp_feat_dim = body_sfeat_dim[-1]
self.with_uv = cfg.LOSS.POINT_REGRESSION_WEIGHTS > 0
if cfg.MODEL.PyMAF.AUX_SUPV_ON:
assert cfg.MODEL.PyMAF.MAF_ON
self.dp_head = IUV_predict_layer(feat_dim=dp_feat_dim)
self.part_module_names['body'].update({'dp_head': self.dp_head})
# encoders for the hand / face parts
if 'hand' in self.bhf_names or 'face' in self.bhf_names:
for hf in ['hand', 'face']:
if hf in bhf_names:
if cfg.MODEL.PyMAF.HF_BACKBONE == 'res50':
self.encoders[hf] = get_resnet_encoder(
cfg,
init_weight=(not cfg.MODEL.EVAL_MODE),
global_mode=self.global_mode
)
self.part_module_names[hf].update({f'encoders.{hf}': self.encoders[hf]})
hf_sfeat_dim = list(cfg.POSE_RES_MODEL.EXTRA.NUM_DECONV_FILTERS)
else:
raise NotImplementedError
if cfg.MODEL.PyMAF.HF_AUX_SUPV_ON:
assert cfg.MODEL.PyMAF.MAF_ON
self.dp_head_hf = nn.ModuleDict()
if 'hand' in bhf_names:
self.dp_head_hf['hand'] = IUV_predict_layer(
feat_dim=hf_sfeat_dim[-1], mode='pncc'
)
self.part_module_names['hand'].update({
'dp_head_hf.hand': self.dp_head_hf['hand']
})
if 'face' in bhf_names:
self.dp_head_hf['face'] = IUV_predict_layer(
feat_dim=hf_sfeat_dim[-1], mode='pncc'
)
self.part_module_names['face'].update({
'dp_head_hf.face': self.dp_head_hf['face']
})
smpl2limb_vert_faces = get_partial_smpl()
self.smpl2lhand = torch.from_numpy(smpl2limb_vert_faces['lhand']['vids']).long()
self.smpl2rhand = torch.from_numpy(smpl2limb_vert_faces['rhand']['vids']).long()
# grid points for grid feature extraction
grid_size = 21
xv, yv = torch.meshgrid([
torch.linspace(-1, 1, grid_size),
torch.linspace(-1, 1, grid_size)
])
grid_points = torch.stack([xv.reshape(-1), yv.reshape(-1)]).unsqueeze(0)
self.register_buffer('grid_points', grid_points)
grid_feat_dim = grid_size * grid_size * cfg.MODEL.PyMAF.MLP_DIM[-1]
# the fusion of grid and mesh-aligned features
self.fuse_grid_align = cfg.MODEL.PyMAF.GRID_ALIGN.USE_ATT or cfg.MODEL.PyMAF.GRID_ALIGN.USE_FC
assert not (cfg.MODEL.PyMAF.GRID_ALIGN.USE_ATT and cfg.MODEL.PyMAF.GRID_ALIGN.USE_FC)
if self.fuse_grid_align:
self.att_starts = cfg.MODEL.PyMAF.GRID_ALIGN.ATT_STARTS
n_iter_att = cfg.MODEL.PyMAF.N_ITER - self.att_starts
att_feat_dim_idx = -cfg.MODEL.PyMAF.GRID_ALIGN.ATT_FEAT_IDX
num_att_heads = cfg.MODEL.PyMAF.GRID_ALIGN.ATT_HEAD
hidden_feat_dim = cfg.MODEL.PyMAF.MLP_DIM[att_feat_dim_idx]
bhf_att_feat_dim = {'body': 2048}
if 'hand' in self.bhf_names:
self.mano_sampler = Mesh_Sampler(type='mano', level=1)
self.mano_ds_len = self.mano_sampler.Dmap.shape[0]
self.part_module_names['hand'].update({'mano_sampler': self.mano_sampler})
bhf_ma_feat_dim.update({'hand': self.mano_ds_len * cfg.MODEL.PyMAF.HF_MLP_DIM[-1]})
if self.fuse_grid_align:
bhf_att_feat_dim.update({'hand': 1024})
if 'face' in self.bhf_names:
bhf_ma_feat_dim.update({
'face':
len(constants.FACIAL_LANDMARKS) * cfg.MODEL.PyMAF.HF_MLP_DIM[-1]
})
if self.fuse_grid_align:
bhf_att_feat_dim.update({'face': 1024})
# spatial alignment attention
if cfg.MODEL.PyMAF.GRID_ALIGN.USE_ATT:
hfimg_feat_dim_list = {}
if 'body' in bhf_names:
hfimg_feat_dim_list['body'] = body_sfeat_dim[-n_iter_att:]
if 'hand' in self.bhf_names or 'face' in self.bhf_names:
if 'hand' in bhf_names:
hfimg_feat_dim_list['hand'] = hf_sfeat_dim[-n_iter_att:]
if 'face' in bhf_names:
hfimg_feat_dim_list['face'] = hf_sfeat_dim[-n_iter_att:]
self.align_attention = get_attention_modules(
bhf_names,
hfimg_feat_dim_list,
hidden_feat_dim,
n_iter=n_iter_att,
num_attention_heads=num_att_heads
)
for part in bhf_names:
self.part_module_names[part].update({
f'align_attention.{part}':
self.align_attention[part]
})
if self.fuse_grid_align:
self.att_feat_reduce = get_fusion_modules(
bhf_names,
bhf_ma_feat_dim,
grid_feat_dim,
n_iter=n_iter_att,
out_feat_len=bhf_att_feat_dim
)
for part in bhf_names:
self.part_module_names[part].update({
f'att_feat_reduce.{part}':
self.att_feat_reduce[part]
})
# build regressor for parameter prediction
self.regressor = nn.ModuleList()
for i in range(cfg.MODEL.PyMAF.N_ITER):
ref_infeat_dim = 0
if 'body' in self.bhf_names:
if cfg.MODEL.PyMAF.MAF_ON:
if self.fuse_grid_align:
if i >= self.att_starts:
ref_infeat_dim = bhf_att_feat_dim['body']
elif i == 0 or cfg.MODEL.PyMAF.GRID_FEAT:
ref_infeat_dim = grid_feat_dim
else:
ref_infeat_dim = ma_feat_dim
else:
if i == 0 or cfg.MODEL.PyMAF.GRID_FEAT:
ref_infeat_dim = grid_feat_dim
else:
ref_infeat_dim = ma_feat_dim
else:
ref_infeat_dim = global_feat_dim
if self.smpl_mode:
self.regressor.append(
Regressor(
feat_dim=ref_infeat_dim,
smpl_mean_params=smpl_mean_params,
use_cam_feats=cfg.MODEL.PyMAF.USE_CAM_FEAT,
smpl_models=self.smpl_family
)
)
else:
if cfg.MODEL.PyMAF.MAF_ON:
if 'hand' in self.bhf_names or 'face' in self.bhf_names:
if i == 0:
feat_dim_hand = grid_feat_dim if 'hand' in self.bhf_names else None
feat_dim_face = grid_feat_dim if 'face' in self.bhf_names else None
else:
if self.fuse_grid_align:
feat_dim_hand = bhf_att_feat_dim[
'hand'] if 'hand' in self.bhf_names else None
feat_dim_face = bhf_att_feat_dim[
'face'] if 'face' in self.bhf_names else None
else:
feat_dim_hand = bhf_ma_feat_dim[
'hand'] if 'hand' in self.bhf_names else None
feat_dim_face = bhf_ma_feat_dim[
'face'] if 'face' in self.bhf_names else None
else:
feat_dim_hand = ref_infeat_dim
feat_dim_face = ref_infeat_dim
else:
ref_infeat_dim = global_feat_dim
feat_dim_hand = global_feat_dim
feat_dim_face = global_feat_dim
self.regressor.append(
Regressor(
feat_dim=ref_infeat_dim,
smpl_mean_params=smpl_mean_params,
use_cam_feats=cfg.MODEL.PyMAF.USE_CAM_FEAT,
feat_dim_hand=feat_dim_hand,
feat_dim_face=feat_dim_face,
bhf_names=bhf_names,
smpl_models=self.smpl_family
)
)
# assign sub-regressor to each part
for dec_name, dec_module in self.regressor[-1].named_children():
if 'hand' in dec_name:
self.part_module_names['hand'].update({
'regressor.{}.{}.'.format(len(self.regressor) - 1, dec_name):
dec_module
})
elif 'face' in dec_name or 'head' in dec_name or 'exp' in dec_name:
self.part_module_names['face'].update({
'regressor.{}.{}.'.format(len(self.regressor) - 1, dec_name):
dec_module
})
elif 'res' in dec_name or 'vis' in dec_name:
self.part_module_names['link'].update({
'regressor.{}.{}.'.format(len(self.regressor) - 1, dec_name):
dec_module
})
elif 'body' in self.part_module_names:
self.part_module_names['body'].update({
'regressor.{}.{}.'.format(len(self.regressor) - 1, dec_name):
dec_module
})
# mesh-aligned feature extractor
self.maf_extractor = nn.ModuleDict()
for part in bhf_names:
self.maf_extractor[part] = nn.ModuleList()
filter_channels_default = cfg.MODEL.PyMAF.MLP_DIM if part == 'body' else cfg.MODEL.PyMAF.HF_MLP_DIM
sfeat_dim = body_sfeat_dim if part == 'body' else hf_sfeat_dim
for i in range(cfg.MODEL.PyMAF.N_ITER):
for f_i, f_dim in enumerate(filter_channels_default):
if sfeat_dim[i] > f_dim:
filter_start = f_i
break
filter_channels = [sfeat_dim[i]] + filter_channels_default[filter_start:]
if cfg.MODEL.PyMAF.GRID_ALIGN.USE_ATT and i >= self.att_starts:
self.maf_extractor[part].append(
MAF_Extractor(
filter_channels=filter_channels_default[att_feat_dim_idx:],
iwp_cam_mode=cfg.MODEL.USE_IWP_CAM
)
)
else:
self.maf_extractor[part].append(
MAF_Extractor(
filter_channels=filter_channels, iwp_cam_mode=cfg.MODEL.USE_IWP_CAM
)
)
self.part_module_names[part].update({f'maf_extractor.{part}': self.maf_extractor[part]})
# check all modules have been added to part_module_names
model_dict_all = dict.fromkeys(self.state_dict().keys())
for key in self.part_module_names.keys():
for name in list(model_dict_all.keys()):
for k in self.part_module_names[key].keys():
if name.startswith(k):
del model_dict_all[name]
# if name.startswith('regressor.') and '.smpl.' in name:
# del model_dict_all[name]
# if name.startswith('regressor.') and '.mano.' in name:
# del model_dict_all[name]
if name.startswith('regressor.') and '.init_' in name:
del model_dict_all[name]
if name == 'grid_points':
del model_dict_all[name]
assert (len(model_dict_all.keys()) == 0)
def init_mesh(self, batch_size, J_regressor=None, rw_cam={}):
""" initialize the mesh model with default poses and shapes
"""
if self.init_mesh_output is None or self.batch_size != batch_size:
self.init_mesh_output = self.regressor[0](
torch.zeros(batch_size), J_regressor=J_regressor, rw_cam=rw_cam, init_mode=True
)
self.batch_size = batch_size
return self.init_mesh_output
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(
self.inplanes,
planes * block.expansion,
kernel_size=1,
stride=stride,
bias=False
),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def _make_deconv_layer(self, num_layers, num_filters, num_kernels):
"""
Deconv_layer used in Simple Baselines:
Xiao et al. Simple Baselines for Human Pose Estimation and Tracking
https://github.com/microsoft/human-pose-estimation.pytorch
"""
assert num_layers == len(num_filters), \
'ERROR: num_deconv_layers is different len(num_deconv_filters)'
assert num_layers == len(num_kernels), \
'ERROR: num_deconv_layers is different len(num_deconv_filters)'
def _get_deconv_cfg(deconv_kernel, index):
if deconv_kernel == 4:
padding = 1
output_padding = 0
elif deconv_kernel == 3:
padding = 1
output_padding = 1
elif deconv_kernel == 2:
padding = 0
output_padding = 0
return deconv_kernel, padding, output_padding
layers = []
for i in range(num_layers):
kernel, padding, output_padding = _get_deconv_cfg(num_kernels[i], i)
planes = num_filters[i]
layers.append(
nn.ConvTranspose2d(
in_channels=self.inplanes,
out_channels=planes,
kernel_size=kernel,
stride=2,
padding=padding,
output_padding=output_padding,
bias=self.deconv_with_bias
)
)
layers.append(nn.BatchNorm2d(planes, momentum=BN_MOMENTUM))
layers.append(nn.ReLU(inplace=True))
self.inplanes = planes
return nn.Sequential(*layers)
def to(self, *args, **kwargs):
super().to(*args, **kwargs)
for m in ['body', 'hand', 'face']:
if m in self.smpl_family:
self.smpl_family[m].model.to(*args, **kwargs)
return self
def cuda(self, *args, **kwargs):
super().cuda(*args, **kwargs)
for m in ['body', 'hand', 'face']:
if m in self.smpl_family:
self.smpl_family[m].model.cuda(*args, **kwargs)
return self
def forward(self, batch={}, J_regressor=None, rw_cam={}):
'''
Args:
batch: input dictionary, including
images: 'img_{part}', for part in body, hand, and face if applicable
inversed affine transformation for the cropping of hand/face images: '{part}_theta_inv' for part in lhand, rhand, and face if applicable
J_regressor: joint regression matrix
rw_cam: real-world camera information, applied when cfg.MODEL.USE_IWP_CAM is False
Returns:
out_dict: the list containing the predicted parameters
vis_feat_list: the list containing features for visualization
'''
# batch keys: ['img_body', 'orig_height', 'orig_width', 'person_id', 'img_lhand',
# 'lhand_theta_inv', 'img_rhand', 'rhand_theta_inv', 'img_face', 'face_theta_inv']
# extract spatial features or global features
# run encoder for body
if 'body' in self.bhf_names:
img_body = batch['img_body']
batch_size = img_body.shape[0]
s_feat_body, g_feat = self.encoders['body'](batch['img_body'])
if cfg.MODEL.PyMAF.MAF_ON:
assert len(s_feat_body) == cfg.MODEL.PyMAF.N_ITER
# run encoders for hand / face
if 'hand' in self.bhf_names or 'face' in self.bhf_names:
limb_feat_dict = {}
limb_gfeat_dict = {}
if 'face' in self.bhf_names:
img_face = batch['img_face']
batch_size = img_face.shape[0]
limb_feat_dict['face'], limb_gfeat_dict['face'] = self.encoders['face'](img_face)
if 'hand' in self.bhf_names:
if 'lhand' in self.part_names:
img_rhand = batch['img_rhand']
batch_size = img_rhand.shape[0]
# flip left hand images
img_lhand = torch.flip(batch['img_lhand'], [3])
img_hands = torch.cat([img_rhand, img_lhand])
s_feat_hands, g_feat_hands = self.encoders['hand'](img_hands)
limb_feat_dict['rhand'] = [feat[:batch_size] for feat in s_feat_hands]
limb_feat_dict['lhand'] = [feat[batch_size:] for feat in s_feat_hands]
if g_feat_hands is not None:
limb_gfeat_dict['rhand'] = g_feat_hands[:batch_size]
limb_gfeat_dict['lhand'] = g_feat_hands[batch_size:]
else:
img_rhand = batch['img_rhand']
batch_size = img_rhand.shape[0]
limb_feat_dict['rhand'], limb_gfeat_dict['rhand'] = self.encoders['hand'](
img_rhand
)
if cfg.MODEL.PyMAF.MAF_ON:
for k in limb_feat_dict.keys():
assert len(limb_feat_dict[k]) == cfg.MODEL.PyMAF.N_ITER
out_dict = {}
# grid-pattern points
grid_points = torch.transpose(self.grid_points.expand(batch_size, -1, -1), 1, 2)
# initial parameters
mesh_output = self.init_mesh(batch_size, J_regressor, rw_cam)
out_dict['mesh_out'] = [mesh_output]
out_dict['dp_out'] = []
# for visulization
vis_feat_list = []
# dense prediction during training
if not cfg.MODEL.EVAL_MODE:
if 'body' in self.bhf_names:
if cfg.MODEL.PyMAF.AUX_SUPV_ON:
iuv_out_dict = self.dp_head(s_feat_body[-1])
out_dict['dp_out'].append(iuv_out_dict)
elif self.hand_only_mode:
if cfg.MODEL.PyMAF.HF_AUX_SUPV_ON:
out_dict['rhand_dpout'] = []
dphand_out_dict = self.dp_head_hf['hand'](limb_feat_dict['rhand'][-1])
out_dict['rhand_dpout'].append(dphand_out_dict)
elif self.face_only_mode:
if cfg.MODEL.PyMAF.HF_AUX_SUPV_ON:
out_dict['face_dpout'] = []
dpface_out_dict = self.dp_head_hf['face'](limb_feat_dict['face'][-1])
out_dict['face_dpout'].append(dpface_out_dict)
# parameter predictions
for rf_i in range(cfg.MODEL.PyMAF.N_ITER):
current_states = {}
if 'body' in self.bhf_names:
pred_cam = mesh_output['pred_cam'].detach()
pred_shape = mesh_output['pred_shape'].detach()
pred_pose = mesh_output['pred_pose'].detach()
current_states['init_cam'] = pred_cam
current_states['init_shape'] = pred_shape
current_states['init_pose'] = pred_pose
pred_smpl_verts = mesh_output['verts'].detach()
if cfg.MODEL.PyMAF.MAF_ON:
s_feat_i = s_feat_body[rf_i]
# re-project mesh on the image plane
if self.hand_only_mode:
pred_cam = mesh_output['pred_cam'].detach()
pred_rhand_v = self.mano_sampler(mesh_output['verts_rh'])
pred_rhand_proj = projection(
pred_rhand_v, {**rw_cam, 'cam_sxy': pred_cam}, iwp_mode=cfg.MODEL.USE_IWP_CAM
)
if cfg.MODEL.USE_IWP_CAM:
pred_rhand_proj = pred_rhand_proj / (224. / 2.)
else:
pred_rhand_proj = j2d_processing(pred_rhand_proj, rw_cam['kps_transf'])
proj_hf_center = {
'rhand': mesh_output['pred_rhand_kp2d'][:,
self.hf_root_idx['rhand']].unsqueeze(1)
}
proj_hf_pts = {
'rhand': torch.cat([proj_hf_center['rhand'], pred_rhand_proj], dim=1)
}
elif self.face_only_mode:
pred_cam = mesh_output['pred_cam'].detach()
pred_face_v = mesh_output['pred_face_kp3d']
pred_face_proj = projection(
pred_face_v, {**rw_cam, 'cam_sxy': pred_cam}, iwp_mode=cfg.MODEL.USE_IWP_CAM
)
if cfg.MODEL.USE_IWP_CAM:
pred_face_proj = pred_face_proj / (224. / 2.)
else:
pred_face_proj = j2d_processing(pred_face_proj, rw_cam['kps_transf'])
proj_hf_center = {
'face': mesh_output['pred_face_kp2d'][:, self.hf_root_idx['face']].unsqueeze(1)
}
proj_hf_pts = {'face': torch.cat([proj_hf_center['face'], pred_face_proj], dim=1)}
elif self.body_hand_mode:
pred_lhand_v = self.mano_sampler(pred_smpl_verts[:, self.smpl2lhand])
pred_rhand_v = self.mano_sampler(pred_smpl_verts[:, self.smpl2rhand])
pred_hand_v = torch.cat([pred_lhand_v, pred_rhand_v], dim=1)
pred_hand_proj = projection(
pred_hand_v, {**rw_cam, 'cam_sxy': pred_cam}, iwp_mode=cfg.MODEL.USE_IWP_CAM
)
if cfg.MODEL.USE_IWP_CAM:
pred_hand_proj = pred_hand_proj / (224. / 2.)
else:
pred_hand_proj = j2d_processing(pred_hand_proj, rw_cam['kps_transf'])
proj_hf_center = {
'lhand': mesh_output['pred_lhand_kp2d'][:,
self.hf_root_idx['lhand']].unsqueeze(1),
'rhand': mesh_output['pred_rhand_kp2d'][:,
self.hf_root_idx['rhand']].unsqueeze(1),
}
proj_hf_pts = {
'lhand':
torch.cat([proj_hf_center['lhand'], pred_hand_proj[:, :self.mano_ds_len]],
dim=1),
'rhand':
torch.cat([proj_hf_center['rhand'], pred_hand_proj[:, self.mano_ds_len:]],
dim=1),
}
elif self.full_body_mode:
pred_lhand_v = self.mano_sampler(pred_smpl_verts[:, self.smpl2lhand])
pred_rhand_v = self.mano_sampler(pred_smpl_verts[:, self.smpl2rhand])
pred_hand_v = torch.cat([pred_lhand_v, pred_rhand_v], dim=1)
pred_hand_proj = projection(
pred_hand_v, {**rw_cam, 'cam_sxy': pred_cam}, iwp_mode=cfg.MODEL.USE_IWP_CAM
)
if cfg.MODEL.USE_IWP_CAM:
pred_hand_proj = pred_hand_proj / (224. / 2.)
else:
pred_hand_proj = j2d_processing(pred_hand_proj, rw_cam['kps_transf'])
proj_hf_center = {
'lhand': mesh_output['pred_lhand_kp2d'][:,
self.hf_root_idx['lhand']].unsqueeze(1),
'rhand': mesh_output['pred_rhand_kp2d'][:,
self.hf_root_idx['rhand']].unsqueeze(1),
'face': mesh_output['pred_face_kp2d'][:, self.hf_root_idx['face']].unsqueeze(1)
}
proj_hf_pts = {
'lhand':
torch.cat([proj_hf_center['lhand'], pred_hand_proj[:, :self.mano_ds_len]],
dim=1), 'rhand':
torch.cat([proj_hf_center['rhand'], pred_hand_proj[:, self.mano_ds_len:]],
dim=1), 'face':
torch.cat([proj_hf_center['face'], mesh_output['pred_face_kp2d']], dim=1)
}
# extract mesh-aligned features for the hand / face part
if 'hand' in self.bhf_names or 'face' in self.bhf_names:
limb_rf_i = rf_i
hand_face_feat = {}
for hf_i, part_name in enumerate(self.part_names):
if 'hand' in part_name:
hf_key = 'hand'
elif 'face' in part_name:
hf_key = 'face'
if cfg.MODEL.PyMAF.MAF_ON:
if cfg.MODEL.PyMAF.HF_BACKBONE == 'res50':
limb_feat_i = limb_feat_dict[part_name][limb_rf_i]
else:
raise NotImplementedError
limb_reduce_dim = (not self.fuse_grid_align) or (rf_i < self.att_starts)
if limb_rf_i == 0 or cfg.MODEL.PyMAF.GRID_FEAT:
limb_ref_feat_ctd = self.maf_extractor[hf_key][limb_rf_i].sampling(
grid_points, im_feat=limb_feat_i, reduce_dim=limb_reduce_dim
)
else:
if self.hand_only_mode or self.face_only_mode:
proj_hf_pts_crop = proj_hf_pts[part_name][:, :, :2]
proj_hf_v_center = proj_hf_pts_crop[:, 0].unsqueeze(1)
if cfg.MODEL.PyMAF.HF_BOX_CENTER:
part_box_ul = torch.min(proj_hf_pts_crop, dim=1)[0].unsqueeze(1)
part_box_br = torch.max(proj_hf_pts_crop, dim=1)[0].unsqueeze(1)
part_box_center = (part_box_ul + part_box_br) / 2.
proj_hf_pts_crop_ctd = proj_hf_pts_crop[:, 1:] - part_box_center
else:
proj_hf_pts_crop_ctd = proj_hf_pts_crop[:, 1:]
elif self.full_body_mode or self.body_hand_mode:
# convert projection points to the space of cropped hand/face images
theta_i_inv = batch[f'{part_name}_theta_inv']
proj_hf_pts_crop = torch.bmm(
theta_i_inv,
homo_vector(proj_hf_pts[part_name][:, :, :2]).permute(0, 2, 1)
).permute(0, 2, 1)
if part_name == 'lhand':
flip_x = torch.tensor([-1, 1])[None,
None, :].to(proj_hf_pts_crop)
proj_hf_pts_crop *= flip_x
if cfg.MODEL.PyMAF.HF_BOX_CENTER:
# align projection points with the cropped image center
part_box_ul = torch.min(proj_hf_pts_crop, dim=1)[0].unsqueeze(1)
part_box_br = torch.max(proj_hf_pts_crop, dim=1)[0].unsqueeze(1)
part_box_center = (part_box_ul + part_box_br) / 2.
proj_hf_pts_crop_ctd = proj_hf_pts_crop[:, 1:] - part_box_center
else:
proj_hf_pts_crop_ctd = proj_hf_pts_crop[:, 1:]
# 0 is the root point
proj_hf_v_center = proj_hf_pts_crop[:, 0].unsqueeze(1)
limb_ref_feat_ctd = self.maf_extractor[hf_key][limb_rf_i].sampling(
proj_hf_pts_crop_ctd.detach(),
im_feat=limb_feat_i,
reduce_dim=limb_reduce_dim
)
if self.fuse_grid_align and limb_rf_i >= self.att_starts:
limb_grid_feature_ctd = self.maf_extractor[hf_key][limb_rf_i].sampling(
grid_points, im_feat=limb_feat_i, reduce_dim=limb_reduce_dim
)
limb_grid_ref_feat_ctd = torch.cat([
limb_grid_feature_ctd, limb_ref_feat_ctd
],
dim=-1).permute(0, 2, 1)
if cfg.MODEL.PyMAF.GRID_ALIGN.USE_ATT:
att_ref_feat_ctd = self.align_attention[hf_key][
limb_rf_i - self.att_starts](limb_grid_ref_feat_ctd)[0]
elif cfg.MODEL.PyMAF.GRID_ALIGN.USE_FC:
att_ref_feat_ctd = limb_grid_ref_feat_ctd
att_ref_feat_ctd = self.maf_extractor[hf_key][limb_rf_i].reduce_dim(
att_ref_feat_ctd.permute(0, 2, 1)
).view(batch_size, -1)
limb_ref_feat_ctd = self.att_feat_reduce[hf_key][
limb_rf_i - self.att_starts](att_ref_feat_ctd)
else:
# limb_ref_feat = limb_ref_feat.view(batch_size, -1)
limb_ref_feat_ctd = limb_ref_feat_ctd.view(batch_size, -1)
hand_face_feat[part_name] = limb_ref_feat_ctd
else:
hand_face_feat[part_name] = limb_gfeat_dict[part_name]
# extract mesh-aligned features for the body part
if 'body' in self.bhf_names:
if cfg.MODEL.PyMAF.MAF_ON:
reduce_dim = (not self.fuse_grid_align) or (rf_i < self.att_starts)
if rf_i == 0 or cfg.MODEL.PyMAF.GRID_FEAT:
ref_feature = self.maf_extractor['body'][rf_i].sampling(
grid_points, im_feat=s_feat_i, reduce_dim=reduce_dim
)
else:
# TODO: use a more sparse SMPL implementation (with 431 vertices) for acceleration
pred_smpl_verts_ds = self.mesh_sampler.downsample(
pred_smpl_verts
) # [B, 431, 3]
ref_feature = self.maf_extractor['body'][rf_i](
pred_smpl_verts_ds,
im_feat=s_feat_i,
cam={**rw_cam, 'cam_sxy': pred_cam},
add_att=True,
reduce_dim=reduce_dim
) # [B, 431 * n_feat]
if self.fuse_grid_align and rf_i >= self.att_starts:
if rf_i > 0 and not cfg.MODEL.PyMAF.GRID_FEAT:
grid_feature = self.maf_extractor['body'][rf_i].sampling(
grid_points, im_feat=s_feat_i, reduce_dim=reduce_dim
)
grid_ref_feat = torch.cat([grid_feature, ref_feature], dim=-1)
else:
grid_ref_feat = ref_feature
grid_ref_feat = grid_ref_feat.permute(0, 2, 1)
if cfg.MODEL.PyMAF.GRID_ALIGN.USE_ATT:
att_ref_feat = self.align_attention['body'][
rf_i - self.att_starts](grid_ref_feat)[0]
elif cfg.MODEL.PyMAF.GRID_ALIGN.USE_FC:
att_ref_feat = grid_ref_feat
att_ref_feat = self.maf_extractor['body'][rf_i].reduce_dim(
att_ref_feat.permute(0, 2, 1)
)
att_ref_feat = att_ref_feat.view(batch_size, -1)
ref_feature = self.att_feat_reduce['body'][rf_i -
self.att_starts](att_ref_feat)
else:
ref_feature = ref_feature.view(batch_size, -1)
else:
ref_feature = g_feat
else:
ref_feature = None
if not self.smpl_mode:
if self.hand_only_mode:
current_states['xc_rhand'] = hand_face_feat['rhand']
elif self.face_only_mode:
current_states['xc_face'] = hand_face_feat['face']
elif self.body_hand_mode:
current_states['xc_lhand'] = hand_face_feat['lhand']
current_states['xc_rhand'] = hand_face_feat['rhand']
elif self.full_body_mode:
current_states['xc_lhand'] = hand_face_feat['lhand']
current_states['xc_rhand'] = hand_face_feat['rhand']
current_states['xc_face'] = hand_face_feat['face']
if rf_i > 0:
for part in self.part_names:
current_states[f'init_{part}'] = mesh_output[f'pred_{part}'].detach()
if part == 'face':
current_states['init_exp'] = mesh_output['pred_exp'].detach()
if self.hand_only_mode:
current_states['init_shape_rh'] = mesh_output['pred_shape_rh'].detach()
current_states['init_orient_rh'] = mesh_output['pred_orient_rh'].detach()
current_states['init_cam_rh'] = mesh_output['pred_cam_rh'].detach()
elif self.face_only_mode:
current_states['init_shape_fa'] = mesh_output['pred_shape_fa'].detach()
current_states['init_orient_fa'] = mesh_output['pred_orient_fa'].detach()
current_states['init_cam_fa'] = mesh_output['pred_cam_fa'].detach()
elif self.full_body_mode or self.body_hand_mode:
if cfg.MODEL.PyMAF.OPT_WRIST:
current_states['init_shape_lh'] = mesh_output['pred_shape_lh'].detach()
current_states['init_orient_lh'] = mesh_output['pred_orient_lh'].detach(
)
current_states['init_cam_lh'] = mesh_output['pred_cam_lh'].detach()
current_states['init_shape_rh'] = mesh_output['pred_shape_rh'].detach()
current_states['init_orient_rh'] = mesh_output['pred_orient_rh'].detach(
)
current_states['init_cam_rh'] = mesh_output['pred_cam_rh'].detach()
# update mesh parameters
mesh_output = self.regressor[rf_i](
ref_feature,
n_iter=1,
J_regressor=J_regressor,
rw_cam=rw_cam,
global_iter=rf_i,
**current_states
)
out_dict['mesh_out'].append(mesh_output)
return out_dict, vis_feat_list
def pymaf_net(smpl_mean_params, pretrained=True, device=torch.device('cuda')):
""" Constructs an PyMAF model with ResNet50 backbone.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = PyMAF(smpl_mean_params, pretrained, device)
return model