Yuliang's picture
Support TEXTure
487ee6d
raw
history blame
5.41 kB
import torch.nn as nn
from .net_utils import (
PosEnSine,
double_conv,
double_conv_down,
double_conv_up,
single_conv,
)
from .transformer_basics import OurMultiheadAttention
class TransformerDecoderUnit(nn.Module):
def __init__(self, feat_dim, n_head=8, pos_en_flag=True, attn_type='softmax', P=None):
super(TransformerDecoderUnit, self).__init__()
self.feat_dim = feat_dim
self.attn_type = attn_type
self.pos_en_flag = pos_en_flag
self.P = P
self.pos_en = PosEnSine(self.feat_dim // 2)
self.attn = OurMultiheadAttention(feat_dim, n_head) # cross-attention
self.linear1 = nn.Conv2d(self.feat_dim, self.feat_dim, 1)
self.linear2 = nn.Conv2d(self.feat_dim, self.feat_dim, 1)
self.activation = nn.ReLU(inplace=True)
self.norm = nn.BatchNorm2d(self.feat_dim)
def forward(self, q, k, v):
if self.pos_en_flag:
q_pos_embed = self.pos_en(q)
k_pos_embed = self.pos_en(k)
else:
q_pos_embed = 0
k_pos_embed = 0
# cross-multi-head attention
out = self.attn(
q=q + q_pos_embed, k=k + k_pos_embed, v=v, attn_type=self.attn_type, P=self.P
)[0]
# feed forward
out2 = self.linear2(self.activation(self.linear1(out)))
out = out + out2
out = self.norm(out)
return out
class Unet(nn.Module):
def __init__(self, in_ch, feat_ch, out_ch):
super().__init__()
self.conv_in = single_conv(in_ch, feat_ch)
self.conv1 = double_conv_down(feat_ch, feat_ch)
self.conv2 = double_conv_down(feat_ch, feat_ch)
self.conv3 = double_conv(feat_ch, feat_ch)
self.conv4 = double_conv_up(feat_ch, feat_ch)
self.conv5 = double_conv_up(feat_ch, feat_ch)
self.conv6 = double_conv(feat_ch, out_ch)
def forward(self, x):
feat0 = self.conv_in(x) # H
feat1 = self.conv1(feat0) # H/2
feat2 = self.conv2(feat1) # H/4
feat3 = self.conv3(feat2) # H/4
feat3 = feat3 + feat2 # H/4
feat4 = self.conv4(feat3) # H/2
feat4 = feat4 + feat1 # H/2
feat5 = self.conv5(feat4) # H
feat5 = feat5 + feat0 # H
feat6 = self.conv6(feat5)
return feat0, feat1, feat2, feat3, feat4, feat6
class Texformer(nn.Module):
def __init__(self, opts):
super().__init__()
self.feat_dim = opts.feat_dim
src_ch = opts.src_ch
tgt_ch = opts.tgt_ch
out_ch = opts.out_ch
self.mask_fusion = opts.mask_fusion
if not self.mask_fusion:
v_ch = out_ch
else:
v_ch = 2 + 3
self.unet_q = Unet(tgt_ch, self.feat_dim, self.feat_dim)
self.unet_k = Unet(src_ch, self.feat_dim, self.feat_dim)
self.unet_v = Unet(v_ch, self.feat_dim, self.feat_dim)
self.trans_dec = nn.ModuleList([
None, None, None,
TransformerDecoderUnit(self.feat_dim, opts.nhead, True, 'softmax'),
TransformerDecoderUnit(self.feat_dim, opts.nhead, True, 'dotproduct'),
TransformerDecoderUnit(self.feat_dim, opts.nhead, True, 'dotproduct')
])
self.conv0 = double_conv(self.feat_dim, self.feat_dim)
self.conv1 = double_conv_down(self.feat_dim, self.feat_dim)
self.conv2 = double_conv_down(self.feat_dim, self.feat_dim)
self.conv3 = double_conv(self.feat_dim, self.feat_dim)
self.conv4 = double_conv_up(self.feat_dim, self.feat_dim)
self.conv5 = double_conv_up(self.feat_dim, self.feat_dim)
if not self.mask_fusion:
self.conv6 = nn.Sequential(
single_conv(self.feat_dim, self.feat_dim),
nn.Conv2d(self.feat_dim, out_ch, 3, 1, 1)
)
else:
self.conv6 = nn.Sequential(
single_conv(self.feat_dim, self.feat_dim),
nn.Conv2d(self.feat_dim, 2 + 3 + 1, 3, 1, 1)
) # mask*flow-sampling + (1-mask)*rgb
self.sigmoid = nn.Sigmoid()
self.tanh = nn.Tanh()
def forward(self, q, k, v):
print('qkv', q.shape, k.shape, v.shape)
q_feat = self.unet_q(q)
k_feat = self.unet_k(k)
v_feat = self.unet_v(v)
print('q_feat', len(q_feat))
outputs = []
for i in range(3, len(q_feat)):
print(i, q_feat[i].shape, k_feat[i].shape, v_feat[i].shape)
outputs.append(self.trans_dec[i](q_feat[i], k_feat[i], v_feat[i]))
print('outputs', outputs[-1].shape)
f0 = self.conv0(outputs[2]) # H
f1 = self.conv1(f0) # H/2
f1 = f1 + outputs[1]
f2 = self.conv2(f1) # H/4
f2 = f2 + outputs[0]
f3 = self.conv3(f2) # H/4
f3 = f3 + outputs[0] + f2
f4 = self.conv4(f3) # H/2
f4 = f4 + outputs[1] + f1
f5 = self.conv5(f4) # H
f5 = f5 + outputs[2] + f0
if not self.mask_fusion:
out = self.tanh(self.conv6(f5))
else:
out_ = self.conv6(f5)
out = [self.tanh(out_[:, :2]), self.tanh(out_[:, 2:5]), self.sigmoid(out_[:, 5:])]
return out