Yuliang's picture
remove MeshLab dependency with Open3D
fb140f6
raw
history blame
1.81 kB
import torch
import torch.nn as nn
import torch.nn.functional as F
class SpatialAttention(nn.Module):
def __init__(self) -> None:
super().__init__()
self.conv = nn.Sequential(
nn.Conv2d(2, 1, kernel_size=(1, 1), stride=1), nn.BatchNorm2d(1), nn.ReLU()
)
self.sgap = nn.AvgPool2d(2)
def forward(self, x):
B, H, W, C = x.shape
x = x.reshape(B, C, H, W)
mx = torch.max(x, 1)[0].unsqueeze(1)
avg = torch.mean(x, 1).unsqueeze(1)
combined = torch.cat([mx, avg], dim=1)
fmap = self.conv(combined)
weight_map = torch.sigmoid(fmap)
out = (x * weight_map).mean(dim=(-2, -1))
return out, x * weight_map
class TokenLearner(nn.Module):
def __init__(self, S) -> None:
super().__init__()
self.S = S
self.tokenizers = nn.ModuleList([SpatialAttention() for _ in range(S)])
def forward(self, x):
B, _, _, C = x.shape
Z = torch.Tensor(B, self.S, C).to(x)
for i in range(self.S):
Ai, _ = self.tokenizers[i](x) # [B, C]
Z[:, i, :] = Ai
return Z
class TokenFuser(nn.Module):
def __init__(self, H, W, C, S) -> None:
super().__init__()
self.projection = nn.Linear(S, S, bias=False)
self.Bi = nn.Linear(C, S)
self.spatial_attn = SpatialAttention()
self.S = S
def forward(self, y, x):
B, S, C = y.shape
B, H, W, C = x.shape
Y = self.projection(y.reshape(B, C, S)).reshape(B, S, C)
Bw = torch.sigmoid(self.Bi(x)).reshape(B, H * W, S) # [B, HW, S]
BwY = torch.matmul(Bw, Y)
_, xj = self.spatial_attn(x)
xj = xj.reshape(B, H * W, C)
out = (BwY + xj).reshape(B, H, W, C)
return out