ECON / lib /pymafx /utils /part_utils.py
Yuliang's picture
Support TEXTure
487ee6d
raw
history blame
2.74 kB
import neural_renderer as nr
import numpy as np
import torch
from core import path_config
from models import SMPL
class PartRenderer():
"""Renderer used to render segmentation masks and part segmentations.
Internally it uses the Neural 3D Mesh Renderer
"""
def __init__(self, focal_length=5000., render_res=224):
# Parameters for rendering
self.focal_length = focal_length
self.render_res = render_res
# We use Neural 3D mesh renderer for rendering masks and part segmentations
self.neural_renderer = nr.Renderer(
dist_coeffs=None,
orig_size=self.render_res,
image_size=render_res,
light_intensity_ambient=1,
light_intensity_directional=0,
anti_aliasing=False
)
self.faces = torch.from_numpy(SMPL(path_config.SMPL_MODEL_DIR).faces.astype(np.int32)
).cuda()
textures = np.load(path_config.VERTEX_TEXTURE_FILE)
self.textures = torch.from_numpy(textures).cuda().float()
self.cube_parts = torch.cuda.FloatTensor(np.load(path_config.CUBE_PARTS_FILE))
def get_parts(self, parts, mask):
"""Process renderer part image to get body part indices."""
bn, c, h, w = parts.shape
mask = mask.view(-1, 1)
parts_index = torch.floor(100 * parts.permute(0, 2, 3, 1).contiguous().view(-1, 3)).long()
parts = self.cube_parts[parts_index[:, 0], parts_index[:, 1], parts_index[:, 2], None]
parts *= mask
parts = parts.view(bn, h, w).long()
return parts
def __call__(self, vertices, camera):
"""Wrapper function for rendering process."""
# Estimate camera parameters given a fixed focal length
cam_t = torch.stack([
camera[:, 1], camera[:, 2], 2 * self.focal_length /
(self.render_res * camera[:, 0] + 1e-9)
],
dim=-1)
batch_size = vertices.shape[0]
K = torch.eye(3, device=vertices.device)
K[0, 0] = self.focal_length
K[1, 1] = self.focal_length
K[2, 2] = 1
K[0, 2] = self.render_res / 2.
K[1, 2] = self.render_res / 2.
K = K[None, :, :].expand(batch_size, -1, -1)
R = torch.eye(3, device=vertices.device)[None, :, :].expand(batch_size, -1, -1)
faces = self.faces[None, :, :].expand(batch_size, -1, -1)
parts, _, mask = self.neural_renderer(
vertices,
faces,
textures=self.textures.expand(batch_size, -1, -1, -1, -1, -1),
K=K,
R=R,
t=cam_t.unsqueeze(1)
)
parts = self.get_parts(parts, mask)
return mask, parts