Spaces:
Runtime error
Runtime error
import imp | |
import json | |
import os | |
from pickle import NONE | |
import numpy as np | |
# os.environ['PYOPENGL_PLATFORM'] = 'osmesa' | |
import torch | |
import torch.nn.functional as F | |
import trimesh | |
from core import constants, path_config | |
from models.smpl import get_model_faces, get_model_tpose, get_smpl_faces | |
# import neural_renderer as nr | |
from skimage.transform import resize | |
from torchvision.utils import make_grid | |
from utils.densepose_methods import DensePoseMethods | |
from utils.imutils import crop | |
from .geometry import convert_to_full_img_cam | |
try: | |
import math | |
import pyrender | |
from pyrender.constants import RenderFlags | |
except: | |
pass | |
try: | |
from opendr.camera import ProjectPoints | |
from opendr.lighting import LambertianPointLight, SphericalHarmonics | |
from opendr.renderer import ColoredRenderer | |
except: | |
pass | |
import logging | |
from pytorch3d.renderer import ( | |
AmbientLights, | |
BlendParams, | |
FoVPerspectiveCameras, | |
HardFlatShader, | |
HardGouraudShader, | |
HardPhongShader, | |
MeshRasterizer, | |
MeshRenderer, | |
PerspectiveCameras, | |
PointLights, | |
RasterizationSettings, | |
SoftPhongShader, | |
SoftSilhouetteShader, | |
TexturesVertex, | |
look_at_view_transform, | |
) | |
from pytorch3d.structures.meshes import Meshes | |
# from pytorch3d.renderer.mesh.renderer import MeshRendererWithFragments | |
logger = logging.getLogger(__name__) | |
class WeakPerspectiveCamera(pyrender.Camera): | |
def __init__( | |
self, scale, translation, znear=pyrender.camera.DEFAULT_Z_NEAR, zfar=None, name=None | |
): | |
super(WeakPerspectiveCamera, self).__init__( | |
znear=znear, | |
zfar=zfar, | |
name=name, | |
) | |
self.scale = scale | |
self.translation = translation | |
def get_projection_matrix(self, width=None, height=None): | |
P = np.eye(4) | |
P[0, 0] = self.scale[0] | |
P[1, 1] = self.scale[1] | |
P[0, 3] = self.translation[0] * self.scale[0] | |
P[1, 3] = -self.translation[1] * self.scale[1] | |
P[2, 2] = -1 | |
return P | |
class PyRenderer: | |
def __init__( | |
self, resolution=(224, 224), orig_img=False, wireframe=False, scale_ratio=1., vis_ratio=1. | |
): | |
self.resolution = (resolution[0] * scale_ratio, resolution[1] * scale_ratio) | |
# self.scale_ratio = scale_ratio | |
self.faces = { | |
'smplx': get_model_faces('smplx'), | |
'smpl': get_model_faces('smpl'), | |
# 'mano': get_model_faces('mano'), | |
# 'flame': get_model_faces('flame'), | |
} | |
self.orig_img = orig_img | |
self.wireframe = wireframe | |
self.renderer = pyrender.OffscreenRenderer( | |
viewport_width=self.resolution[0], viewport_height=self.resolution[1], point_size=1.0 | |
) | |
self.vis_ratio = vis_ratio | |
# set the scene | |
self.scene = pyrender.Scene(bg_color=[0.0, 0.0, 0.0, 0.0], ambient_light=(0.3, 0.3, 0.3)) | |
light = pyrender.PointLight(color=np.array([1.0, 1.0, 1.0]) * 0.2, intensity=1) | |
yrot = np.radians(120) # angle of lights | |
light_pose = np.eye(4) | |
light_pose[:3, 3] = [0, -1, 1] | |
self.scene.add(light, pose=light_pose) | |
light_pose[:3, 3] = [0, 1, 1] | |
self.scene.add(light, pose=light_pose) | |
light_pose[:3, 3] = [1, 1, 2] | |
self.scene.add(light, pose=light_pose) | |
spot_l = pyrender.SpotLight( | |
color=np.ones(3), intensity=15.0, innerConeAngle=np.pi / 3, outerConeAngle=np.pi / 2 | |
) | |
light_pose[:3, 3] = [1, 2, 2] | |
self.scene.add(spot_l, pose=light_pose) | |
light_pose[:3, 3] = [-1, 2, 2] | |
self.scene.add(spot_l, pose=light_pose) | |
# light_pose[:3, 3] = [-2, 2, 0] | |
# self.scene.add(spot_l, pose=light_pose) | |
# light_pose[:3, 3] = [-2, 2, 0] | |
# self.scene.add(spot_l, pose=light_pose) | |
self.colors_dict = { | |
'red': np.array([0.5, 0.2, 0.2]), | |
'pink': np.array([0.7, 0.5, 0.5]), | |
'neutral': np.array([0.7, 0.7, 0.6]), | |
# 'purple': np.array([0.5, 0.5, 0.7]), | |
'purple': np.array([0.55, 0.4, 0.9]), | |
'green': np.array([0.5, 0.55, 0.3]), | |
'sky': np.array([0.3, 0.5, 0.55]), | |
'white': np.array([1.0, 0.98, 0.94]), | |
} | |
def __call__( | |
self, | |
verts, | |
faces=None, | |
img=np.zeros((224, 224, 3)), | |
cam=np.array([1, 0, 0]), | |
focal_length=[5000, 5000], | |
camera_rotation=np.eye(3), | |
crop_info=None, | |
angle=None, | |
axis=None, | |
mesh_filename=None, | |
color_type=None, | |
color=[1.0, 1.0, 0.9], | |
iwp_mode=True, | |
crop_img=True, | |
mesh_type='smpl', | |
scale_ratio=1., | |
rgba_mode=False | |
): | |
if faces is None: | |
faces = self.faces[mesh_type] | |
mesh = trimesh.Trimesh(vertices=verts, faces=faces, process=False) | |
Rx = trimesh.transformations.rotation_matrix(math.radians(180), [1, 0, 0]) | |
mesh.apply_transform(Rx) | |
if mesh_filename is not None: | |
mesh.export(mesh_filename) | |
if angle and axis: | |
R = trimesh.transformations.rotation_matrix(math.radians(angle), axis) | |
mesh.apply_transform(R) | |
cam = cam.copy() | |
if iwp_mode: | |
resolution = np.array(img.shape[:2]) * scale_ratio | |
if len(cam) == 4: | |
sx, sy, tx, ty = cam | |
# sy = sx | |
camera_translation = np.array([ | |
tx, ty, 2 * focal_length[0] / (resolution[0] * sy + 1e-9) | |
]) | |
elif len(cam) == 3: | |
sx, tx, ty = cam | |
sy = sx | |
camera_translation = np.array([ | |
-tx, ty, 2 * focal_length[0] / (resolution[0] * sy + 1e-9) | |
]) | |
render_res = resolution | |
self.renderer.viewport_width = render_res[1] | |
self.renderer.viewport_height = render_res[0] | |
else: | |
if crop_info['opt_cam_t'] is None: | |
camera_translation = convert_to_full_img_cam( | |
pare_cam=cam[None], | |
bbox_height=crop_info['bbox_scale'] * 200., | |
bbox_center=crop_info['bbox_center'], | |
img_w=crop_info['img_w'], | |
img_h=crop_info['img_h'], | |
focal_length=focal_length[0], | |
) | |
else: | |
camera_translation = crop_info['opt_cam_t'] | |
if torch.is_tensor(camera_translation): | |
camera_translation = camera_translation[0].cpu().numpy() | |
camera_translation = camera_translation.copy() | |
camera_translation[0] *= -1 | |
if 'img_h' in crop_info and 'img_w' in crop_info: | |
render_res = (int(crop_info['img_h'][0]), int(crop_info['img_w'][0])) | |
else: | |
render_res = img.shape[:2] if type(img) is not list else img[0].shape[:2] | |
self.renderer.viewport_width = render_res[1] | |
self.renderer.viewport_height = render_res[0] | |
camera_rotation = camera_rotation.T | |
camera = pyrender.IntrinsicsCamera( | |
fx=focal_length[0], fy=focal_length[1], cx=render_res[1] / 2., cy=render_res[0] / 2. | |
) | |
if color_type != None: | |
color = self.colors_dict[color_type] | |
material = pyrender.MetallicRoughnessMaterial( | |
metallicFactor=0.2, | |
roughnessFactor=0.6, | |
alphaMode='OPAQUE', | |
baseColorFactor=(color[0], color[1], color[2], 1.0) | |
) | |
mesh = pyrender.Mesh.from_trimesh(mesh, material=material) | |
mesh_node = self.scene.add(mesh, 'mesh') | |
camera_pose = np.eye(4) | |
camera_pose[:3, :3] = camera_rotation | |
camera_pose[:3, 3] = camera_rotation @ camera_translation | |
cam_node = self.scene.add(camera, pose=camera_pose) | |
if self.wireframe: | |
render_flags = RenderFlags.RGBA | RenderFlags.ALL_WIREFRAME | RenderFlags.SHADOWS_SPOT | |
else: | |
render_flags = RenderFlags.RGBA | RenderFlags.SHADOWS_SPOT | |
rgb, _ = self.renderer.render(self.scene, flags=render_flags) | |
if crop_info is not None and crop_img: | |
crop_res = img.shape[:2] | |
rgb, _, _ = crop(rgb, crop_info['bbox_center'][0], crop_info['bbox_scale'][0], crop_res) | |
valid_mask = (rgb[:, :, -1] > 0)[:, :, np.newaxis] | |
image_list = [img] if type(img) is not list else img | |
return_img = [] | |
for item in image_list: | |
if scale_ratio != 1: | |
orig_size = item.shape[:2] | |
item = resize( | |
item, (orig_size[0] * scale_ratio, orig_size[1] * scale_ratio), | |
anti_aliasing=True | |
) | |
item = (item * 255).astype(np.uint8) | |
output_img = rgb[:, :, :-1] * valid_mask * self.vis_ratio + ( | |
1 - valid_mask * self.vis_ratio | |
) * item | |
# output_img[valid_mask < 0.5] = item[valid_mask < 0.5] | |
# if scale_ratio != 1: | |
# output_img = resize(output_img, (orig_size[0], orig_size[1]), anti_aliasing=True) | |
if rgba_mode: | |
output_img_rgba = np.zeros((output_img.shape[0], output_img.shape[1], 4)) | |
output_img_rgba[:, :, :3] = output_img | |
output_img_rgba[:, :, 3][valid_mask[:, :, 0]] = 255 | |
output_img = output_img_rgba.astype(np.uint8) | |
image = output_img.astype(np.uint8) | |
return_img.append(image) | |
return_img.append(item) | |
if type(img) is not list: | |
# if scale_ratio == 1: | |
return_img = return_img[0] | |
self.scene.remove_node(mesh_node) | |
self.scene.remove_node(cam_node) | |
return return_img | |
class OpenDRenderer: | |
def __init__(self, resolution=(224, 224), ratio=1): | |
self.resolution = (resolution[0] * ratio, resolution[1] * ratio) | |
self.ratio = ratio | |
self.focal_length = 5000. | |
self.K = np.array([[self.focal_length, 0., self.resolution[1] / 2.], | |
[0., self.focal_length, self.resolution[0] / 2.], [0., 0., 1.]]) | |
self.colors_dict = { | |
'red': np.array([0.5, 0.2, 0.2]), | |
'pink': np.array([0.7, 0.5, 0.5]), | |
'neutral': np.array([0.7, 0.7, 0.6]), | |
'purple': np.array([0.5, 0.5, 0.7]), | |
'green': np.array([0.5, 0.55, 0.3]), | |
'sky': np.array([0.3, 0.5, 0.55]), | |
'white': np.array([1.0, 0.98, 0.94]), | |
} | |
self.renderer = ColoredRenderer() | |
self.faces = get_smpl_faces() | |
def reset_res(self, resolution): | |
self.resolution = (resolution[0] * self.ratio, resolution[1] * self.ratio) | |
self.K = np.array([[self.focal_length, 0., self.resolution[1] / 2.], | |
[0., self.focal_length, self.resolution[0] / 2.], [0., 0., 1.]]) | |
def __call__( | |
self, | |
verts, | |
faces=None, | |
color=None, | |
color_type='white', | |
R=None, | |
mesh_filename=None, | |
img=np.zeros((224, 224, 3)), | |
cam=np.array([1, 0, 0]), | |
rgba=False, | |
addlight=True | |
): | |
'''Render mesh using OpenDR | |
verts: shape - (V, 3) | |
faces: shape - (F, 3) | |
img: shape - (224, 224, 3), range - [0, 255] (np.uint8) | |
axis: rotate along with X/Y/Z axis (by angle) | |
R: rotation matrix (used to manipulate verts) shape - [3, 3] | |
Return: | |
rendered img: shape - (224, 224, 3), range - [0, 255] (np.uint8) | |
''' | |
## Create OpenDR renderer | |
rn = self.renderer | |
h, w = self.resolution | |
K = self.K | |
f = np.array([K[0, 0], K[1, 1]]) | |
c = np.array([K[0, 2], K[1, 2]]) | |
if faces is None: | |
faces = self.faces | |
if len(cam) == 4: | |
t = np.array([cam[2], cam[3], 2 * K[0, 0] / (w * cam[0] + 1e-9)]) | |
elif len(cam) == 3: | |
t = np.array([cam[1], cam[2], 2 * K[0, 0] / (w * cam[0] + 1e-9)]) | |
rn.camera = ProjectPoints(rt=np.array([0, 0, 0]), t=t, f=f, c=c, k=np.zeros(5)) | |
rn.frustum = {'near': 1., 'far': 1000., 'width': w, 'height': h} | |
albedo = np.ones_like(verts) * .9 | |
if color is not None: | |
color0 = np.array(color) | |
color1 = np.array(color) | |
color2 = np.array(color) | |
elif color_type == 'white': | |
color0 = np.array([1., 1., 1.]) | |
color1 = np.array([1., 1., 1.]) | |
color2 = np.array([0.7, 0.7, 0.7]) | |
color = np.ones_like(verts) * self.colors_dict[color_type][None, :] | |
else: | |
color0 = self.colors_dict[color_type] * 1.2 | |
color1 = self.colors_dict[color_type] * 1.2 | |
color2 = self.colors_dict[color_type] * 1.2 | |
color = np.ones_like(verts) * self.colors_dict[color_type][None, :] | |
# render_smpl = rn.r | |
if R is not None: | |
assert R.shape == (3, 3), "Shape of rotation matrix should be (3, 3)" | |
verts = np.dot(verts, R) | |
rn.set(v=verts, f=faces, vc=color, bgcolor=np.zeros(3)) | |
if addlight: | |
yrot = np.radians(120) # angle of lights | |
# # 1. 1. 0.7 | |
rn.vc = LambertianPointLight( | |
f=rn.f, | |
v=rn.v, | |
num_verts=len(rn.v), | |
light_pos=rotateY(np.array([-200, -100, -100]), yrot), | |
vc=albedo, | |
light_color=color0 | |
) | |
# Construct Left Light | |
rn.vc += LambertianPointLight( | |
f=rn.f, | |
v=rn.v, | |
num_verts=len(rn.v), | |
light_pos=rotateY(np.array([800, 10, 300]), yrot), | |
vc=albedo, | |
light_color=color1 | |
) | |
# Construct Right Light | |
rn.vc += LambertianPointLight( | |
f=rn.f, | |
v=rn.v, | |
num_verts=len(rn.v), | |
light_pos=rotateY(np.array([-500, 500, 1000]), yrot), | |
vc=albedo, | |
light_color=color2 | |
) | |
rendered_image = rn.r | |
visibility_image = rn.visibility_image | |
image_list = [img] if type(img) is not list else img | |
return_img = [] | |
for item in image_list: | |
if self.ratio != 1: | |
img_resized = resize( | |
item, (item.shape[0] * self.ratio, item.shape[1] * self.ratio), | |
anti_aliasing=True | |
) | |
else: | |
img_resized = item / 255. | |
try: | |
img_resized[visibility_image != (2**32 - 1) | |
] = rendered_image[visibility_image != (2**32 - 1)] | |
except: | |
logger.warning('Can not render mesh.') | |
img_resized = (img_resized * 255).astype(np.uint8) | |
res = img_resized | |
if rgba: | |
img_resized_rgba = np.zeros((img_resized.shape[0], img_resized.shape[1], 4)) | |
img_resized_rgba[:, :, :3] = img_resized | |
img_resized_rgba[:, :, 3][visibility_image != (2**32 - 1)] = 255 | |
res = img_resized_rgba.astype(np.uint8) | |
return_img.append(res) | |
if type(img) is not list: | |
return_img = return_img[0] | |
return return_img | |
# https://github.com/classner/up/blob/master/up_tools/camera.py | |
def rotateY(points, angle): | |
"""Rotate all points in a 2D array around the y axis.""" | |
ry = np.array([[np.cos(angle), 0., np.sin(angle)], [0., 1., 0.], | |
[-np.sin(angle), 0., np.cos(angle)]]) | |
return np.dot(points, ry) | |
def rotateX(points, angle): | |
"""Rotate all points in a 2D array around the x axis.""" | |
rx = np.array([[1., 0., 0.], [0., np.cos(angle), -np.sin(angle)], | |
[0., np.sin(angle), np.cos(angle)]]) | |
return np.dot(points, rx) | |
def rotateZ(points, angle): | |
"""Rotate all points in a 2D array around the z axis.""" | |
rz = np.array([[np.cos(angle), -np.sin(angle), 0.], [np.sin(angle), | |
np.cos(angle), 0.], [0., 0., 1.]]) | |
return np.dot(points, rz) | |
class IUV_Renderer(object): | |
def __init__( | |
self, | |
focal_length=5000., | |
orig_size=224, | |
output_size=56, | |
mode='iuv', | |
device=torch.device('cuda'), | |
mesh_type='smpl' | |
): | |
self.focal_length = focal_length | |
self.orig_size = orig_size | |
self.output_size = output_size | |
if mode in ['iuv']: | |
if mesh_type == 'smpl': | |
DP = DensePoseMethods() | |
vert_mapping = DP.All_vertices.astype('int64') - 1 | |
self.vert_mapping = torch.from_numpy(vert_mapping) | |
faces = DP.FacesDensePose | |
faces = faces[None, :, :] | |
self.faces = torch.from_numpy( | |
faces.astype(np.int32) | |
) # [1, 13774, 3], torch.int32 | |
num_part = float(np.max(DP.FaceIndices)) | |
self.num_part = num_part | |
dp_vert_pid_fname = 'data/dp_vert_pid.npy' | |
if os.path.exists(dp_vert_pid_fname): | |
dp_vert_pid = list(np.load(dp_vert_pid_fname)) | |
else: | |
print('creating data/dp_vert_pid.npy') | |
dp_vert_pid = [] | |
for v in range(len(vert_mapping)): | |
for i, f in enumerate(DP.FacesDensePose): | |
if v in f: | |
dp_vert_pid.append(DP.FaceIndices[i]) | |
break | |
np.save(dp_vert_pid_fname, np.array(dp_vert_pid)) | |
textures_vts = np.array([(dp_vert_pid[i] / num_part, DP.U_norm[i], DP.V_norm[i]) | |
for i in range(len(vert_mapping))]) | |
self.textures_vts = torch.from_numpy( | |
textures_vts[None].astype(np.float32) | |
) # (1, 7829, 3) | |
elif mode == 'pncc': | |
self.vert_mapping = None | |
self.faces = torch.from_numpy( | |
get_model_faces(mesh_type)[None].astype(np.int32) | |
) # mano: torch.Size([1, 1538, 3]) | |
textures_vts = get_model_tpose(mesh_type).unsqueeze( | |
0 | |
) # mano: torch.Size([1, 778, 3]) | |
texture_min = torch.min(textures_vts) - 0.001 | |
texture_range = torch.max(textures_vts) - texture_min + 0.001 | |
self.textures_vts = (textures_vts - texture_min) / texture_range | |
elif mode in ['seg']: | |
self.vert_mapping = None | |
body_model = 'smpl' | |
self.faces = torch.from_numpy(get_smpl_faces().astype(np.int32)[None]) | |
with open( | |
os.path.join( | |
path_config.SMPL_MODEL_DIR, '{}_vert_segmentation.json'.format(body_model) | |
), 'rb' | |
) as json_file: | |
smpl_part_id = json.load(json_file) | |
v_id = [] | |
for k in smpl_part_id.keys(): | |
v_id.extend(smpl_part_id[k]) | |
v_id = torch.tensor(v_id) | |
n_verts = len(torch.unique(v_id)) | |
num_part = len(constants.SMPL_PART_ID.keys()) | |
self.num_part = num_part | |
seg_vert_pid = np.zeros(n_verts) | |
for k in smpl_part_id.keys(): | |
seg_vert_pid[smpl_part_id[k]] = constants.SMPL_PART_ID[k] | |
print('seg_vert_pid', seg_vert_pid.shape) | |
textures_vts = seg_vert_pid[:, None].repeat(3, axis=1) / num_part | |
print('textures_vts', textures_vts.shape) | |
# textures_vts = np.array( | |
# [(seg_vert_pid[i] / num_part,) * 3 for i in | |
# range(n_verts)]) | |
self.textures_vts = torch.from_numpy(textures_vts[None].astype(np.float32)) | |
K = np.array([[self.focal_length, 0., self.orig_size / 2.], | |
[0., self.focal_length, self.orig_size / 2.], [0., 0., 1.]]) | |
R = np.array([[-1., 0., 0.], [0., -1., 0.], [0., 0., 1.]]) | |
t = np.array([0, 0, 5]) | |
if self.orig_size != 224: | |
rander_scale = self.orig_size / float(224) | |
K[0, 0] *= rander_scale | |
K[1, 1] *= rander_scale | |
K[0, 2] *= rander_scale | |
K[1, 2] *= rander_scale | |
self.K = torch.FloatTensor(K[None, :, :]) | |
self.R = torch.FloatTensor(R[None, :, :]) | |
self.t = torch.FloatTensor(t[None, None, :]) | |
camK = F.pad(self.K, (0, 1, 0, 1), "constant", 0) | |
camK[:, 2, 2] = 0 | |
camK[:, 3, 2] = 1 | |
camK[:, 2, 3] = 1 | |
self.K = camK | |
self.device = device | |
lights = AmbientLights(device=self.device) | |
raster_settings = RasterizationSettings( | |
image_size=output_size, | |
blur_radius=0, | |
faces_per_pixel=1, | |
) | |
self.renderer = MeshRenderer( | |
rasterizer=MeshRasterizer(raster_settings=raster_settings), | |
shader=HardFlatShader( | |
device=self.device, | |
lights=lights, | |
blend_params=BlendParams(background_color=[0, 0, 0], sigma=0.0, gamma=0.0) | |
) | |
) | |
def camera_matrix(self, cam): | |
batch_size = cam.size(0) | |
K = self.K.repeat(batch_size, 1, 1) | |
R = self.R.repeat(batch_size, 1, 1) | |
t = torch.stack([ | |
-cam[:, 1], -cam[:, 2], 2 * self.focal_length / (self.orig_size * cam[:, 0] + 1e-9) | |
], | |
dim=-1) | |
if cam.is_cuda: | |
# device_id = cam.get_device() | |
K = K.to(cam.device) | |
R = R.to(cam.device) | |
t = t.to(cam.device) | |
return K, R, t | |
def verts2iuvimg(self, verts, cam, iwp_mode=True): | |
batch_size = verts.size(0) | |
K, R, t = self.camera_matrix(cam) | |
if self.vert_mapping is None: | |
vertices = verts | |
else: | |
vertices = verts[:, self.vert_mapping, :] | |
mesh = Meshes(vertices, self.faces.to(verts.device).expand(batch_size, -1, -1)) | |
mesh.textures = TexturesVertex( | |
verts_features=self.textures_vts.to(verts.device).expand(batch_size, -1, -1) | |
) | |
cameras = PerspectiveCameras( | |
device=verts.device, | |
R=R, | |
T=t, | |
K=K, | |
in_ndc=False, | |
image_size=[(self.orig_size, self.orig_size)] | |
) | |
iuv_image = self.renderer(mesh, cameras=cameras) | |
iuv_image = iuv_image[..., :3].permute(0, 3, 1, 2) | |
return iuv_image | |