ECON / lib /torch_utils /ops /conv2d_gradfix.py
Yuliang's picture
Support TEXTure
487ee6d
raw
history blame
8.46 kB
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
"""Custom replacement for `torch.nn.functional.conv2d` that supports
arbitrarily high order gradients with zero performance penalty."""
import contextlib
import warnings
import torch
# pylint: disable=redefined-builtin
# pylint: disable=arguments-differ
# pylint: disable=protected-access
#----------------------------------------------------------------------------
enabled = False # Enable the custom op by setting this to true.
weight_gradients_disabled = False # Forcefully disable computation of gradients with respect to the weights.
@contextlib.contextmanager
def no_weight_gradients():
global weight_gradients_disabled
old = weight_gradients_disabled
weight_gradients_disabled = True
yield
weight_gradients_disabled = old
#----------------------------------------------------------------------------
def conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1):
if _should_use_custom_op(input):
return _conv2d_gradfix(
transpose=False,
weight_shape=weight.shape,
stride=stride,
padding=padding,
output_padding=0,
dilation=dilation,
groups=groups
).apply(input, weight, bias)
return torch.nn.functional.conv2d(
input=input,
weight=weight,
bias=bias,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups
)
def conv_transpose2d(
input, weight, bias=None, stride=1, padding=0, output_padding=0, groups=1, dilation=1
):
if _should_use_custom_op(input):
return _conv2d_gradfix(
transpose=True,
weight_shape=weight.shape,
stride=stride,
padding=padding,
output_padding=output_padding,
groups=groups,
dilation=dilation
).apply(input, weight, bias)
return torch.nn.functional.conv_transpose2d(
input=input,
weight=weight,
bias=bias,
stride=stride,
padding=padding,
output_padding=output_padding,
groups=groups,
dilation=dilation
)
#----------------------------------------------------------------------------
def _should_use_custom_op(input):
assert isinstance(input, torch.Tensor)
if (not enabled) or (not torch.backends.cudnn.enabled):
return False
if input.device.type != 'cuda':
return False
if any(torch.__version__.startswith(x) for x in ['1.7.', '1.8.', '1.9']):
return True
warnings.warn(
f'conv2d_gradfix not supported on PyTorch {torch.__version__}. Falling back to torch.nn.functional.conv2d().'
)
return False
def _tuple_of_ints(xs, ndim):
xs = tuple(xs) if isinstance(xs, (tuple, list)) else (xs, ) * ndim
assert len(xs) == ndim
assert all(isinstance(x, int) for x in xs)
return xs
#----------------------------------------------------------------------------
_conv2d_gradfix_cache = dict()
def _conv2d_gradfix(transpose, weight_shape, stride, padding, output_padding, dilation, groups):
# Parse arguments.
ndim = 2
weight_shape = tuple(weight_shape)
stride = _tuple_of_ints(stride, ndim)
padding = _tuple_of_ints(padding, ndim)
output_padding = _tuple_of_ints(output_padding, ndim)
dilation = _tuple_of_ints(dilation, ndim)
# Lookup from cache.
key = (transpose, weight_shape, stride, padding, output_padding, dilation, groups)
if key in _conv2d_gradfix_cache:
return _conv2d_gradfix_cache[key]
# Validate arguments.
assert groups >= 1
assert len(weight_shape) == ndim + 2
assert all(stride[i] >= 1 for i in range(ndim))
assert all(padding[i] >= 0 for i in range(ndim))
assert all(dilation[i] >= 0 for i in range(ndim))
if not transpose:
assert all(output_padding[i] == 0 for i in range(ndim))
else: # transpose
assert all(0 <= output_padding[i] < max(stride[i], dilation[i]) for i in range(ndim))
# Helpers.
common_kwargs = dict(stride=stride, padding=padding, dilation=dilation, groups=groups)
def calc_output_padding(input_shape, output_shape):
if transpose:
return [0, 0]
return [
input_shape[i + 2] - (output_shape[i + 2] - 1) * stride[i] - (1 - 2 * padding[i]) -
dilation[i] * (weight_shape[i + 2] - 1) for i in range(ndim)
]
# Forward & backward.
class Conv2d(torch.autograd.Function):
@staticmethod
def forward(ctx, input, weight, bias):
assert weight.shape == weight_shape
if not transpose:
output = torch.nn.functional.conv2d(
input=input, weight=weight, bias=bias, **common_kwargs
)
else: # transpose
output = torch.nn.functional.conv_transpose2d(
input=input,
weight=weight,
bias=bias,
output_padding=output_padding,
**common_kwargs
)
ctx.save_for_backward(input, weight)
return output
@staticmethod
def backward(ctx, grad_output):
input, weight = ctx.saved_tensors
grad_input = None
grad_weight = None
grad_bias = None
if ctx.needs_input_grad[0]:
p = calc_output_padding(input_shape=input.shape, output_shape=grad_output.shape)
grad_input = _conv2d_gradfix(
transpose=(not transpose),
weight_shape=weight_shape,
output_padding=p,
**common_kwargs
).apply(grad_output, weight, None)
assert grad_input.shape == input.shape
if ctx.needs_input_grad[1] and not weight_gradients_disabled:
grad_weight = Conv2dGradWeight.apply(grad_output, input)
assert grad_weight.shape == weight_shape
if ctx.needs_input_grad[2]:
grad_bias = grad_output.sum([0, 2, 3])
return grad_input, grad_weight, grad_bias
# Gradient with respect to the weights.
class Conv2dGradWeight(torch.autograd.Function):
@staticmethod
def forward(ctx, grad_output, input):
op = torch._C._jit_get_operation(
'aten::cudnn_convolution_backward_weight'
if not transpose else 'aten::cudnn_convolution_transpose_backward_weight'
)
flags = [
torch.backends.cudnn.benchmark, torch.backends.cudnn.deterministic,
torch.backends.cudnn.allow_tf32
]
grad_weight = op(
weight_shape, grad_output, input, padding, stride, dilation, groups, *flags
)
assert grad_weight.shape == weight_shape
ctx.save_for_backward(grad_output, input)
return grad_weight
@staticmethod
def backward(ctx, grad2_grad_weight):
grad_output, input = ctx.saved_tensors
grad2_grad_output = None
grad2_input = None
if ctx.needs_input_grad[0]:
grad2_grad_output = Conv2d.apply(input, grad2_grad_weight, None)
assert grad2_grad_output.shape == grad_output.shape
if ctx.needs_input_grad[1]:
p = calc_output_padding(input_shape=input.shape, output_shape=grad_output.shape)
grad2_input = _conv2d_gradfix(
transpose=(not transpose),
weight_shape=weight_shape,
output_padding=p,
**common_kwargs
).apply(grad_output, grad2_grad_weight, None)
assert grad2_input.shape == input.shape
return grad2_grad_output, grad2_input
_conv2d_gradfix_cache[key] = Conv2d
return Conv2d
#----------------------------------------------------------------------------