import torch import torch.nn as nn import torch.nn.functional as F class SpatialAttention(nn.Module): def __init__(self) -> None: super().__init__() self.conv = nn.Sequential( nn.Conv2d(2, 1, kernel_size=(1, 1), stride=1), nn.BatchNorm2d(1), nn.ReLU() ) self.sgap = nn.AvgPool2d(2) def forward(self, x): B, H, W, C = x.shape x = x.reshape(B, C, H, W) mx = torch.max(x, 1)[0].unsqueeze(1) avg = torch.mean(x, 1).unsqueeze(1) combined = torch.cat([mx, avg], dim=1) fmap = self.conv(combined) weight_map = torch.sigmoid(fmap) out = (x * weight_map).mean(dim=(-2, -1)) return out, x * weight_map class TokenLearner(nn.Module): def __init__(self, S) -> None: super().__init__() self.S = S self.tokenizers = nn.ModuleList([SpatialAttention() for _ in range(S)]) def forward(self, x): B, _, _, C = x.shape Z = torch.Tensor(B, self.S, C).to(x) for i in range(self.S): Ai, _ = self.tokenizers[i](x) # [B, C] Z[:, i, :] = Ai return Z class TokenFuser(nn.Module): def __init__(self, H, W, C, S) -> None: super().__init__() self.projection = nn.Linear(S, S, bias=False) self.Bi = nn.Linear(C, S) self.spatial_attn = SpatialAttention() self.S = S def forward(self, y, x): B, S, C = y.shape B, H, W, C = x.shape Y = self.projection(y.reshape(B, C, S)).reshape(B, S, C) Bw = torch.sigmoid(self.Bi(x)).reshape(B, H * W, S) # [B, HW, S] BwY = torch.matmul(Bw, Y) _, xj = self.spatial_attn(x) xj = xj.reshape(B, H * W, C) out = (BwY + xj).reshape(B, H, W, C) return out