File size: 25,176 Bytes
2d5f249
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9bb001d
2d5f249
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605

# -*- coding: utf-8 -*-

# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: [email protected]


from .seg3d_utils import (
    create_grid3D,
    plot_mask3D,
    SmoothConv3D,
)

import torch
import torch.nn as nn
import numpy as np
import torch.nn.functional as F
import mcubes
from kaolin.ops.conversions import voxelgrids_to_trianglemeshes
import logging

logging.getLogger("lightning").setLevel(logging.ERROR)


class Seg3dLossless(nn.Module):
    def __init__(self,
                 query_func,
                 b_min,
                 b_max,
                 resolutions,
                 channels=1,
                 balance_value=0.5,
                 align_corners=False,
                 visualize=False,
                 debug=False,
                 use_cuda_impl=False,
                 faster=False,
                 use_shadow=False,
                 **kwargs):
        """
        align_corners: same with how you process gt. (grid_sample / interpolate) 
        """
        super().__init__()
        self.query_func = query_func
        self.register_buffer(
            'b_min',
            torch.tensor(b_min).float().unsqueeze(1))  # [bz, 1, 3]
        self.register_buffer(
            'b_max',
            torch.tensor(b_max).float().unsqueeze(1))  # [bz, 1, 3]

        # ti.init(arch=ti.cuda)
        # self.mciso_taichi = MCISO(dim=3, N=resolutions[-1]-1)

        if type(resolutions[0]) is int:
            resolutions = torch.tensor([(res, res, res)
                                        for res in resolutions])
        else:
            resolutions = torch.tensor(resolutions)
        self.register_buffer('resolutions', resolutions)
        self.batchsize = self.b_min.size(0)
        assert self.batchsize == 1
        self.balance_value = balance_value
        self.channels = channels
        assert self.channels == 1
        self.align_corners = align_corners
        self.visualize = visualize
        self.debug = debug
        self.use_cuda_impl = use_cuda_impl
        self.faster = faster
        self.use_shadow = use_shadow

        for resolution in resolutions:
            assert resolution[0] % 2 == 1 and resolution[1] % 2 == 1, \
                f"resolution {resolution} need to be odd becuase of align_corner."

        # init first resolution
        init_coords = create_grid3D(0,
                                    resolutions[-1] - 1,
                                    steps=resolutions[0])  # [N, 3]
        init_coords = init_coords.unsqueeze(0).repeat(self.batchsize, 1,
                                                      1)  # [bz, N, 3]
        self.register_buffer('init_coords', init_coords)

        # some useful tensors
        calculated = torch.zeros(
            (self.resolutions[-1][2], self.resolutions[-1][1],
             self.resolutions[-1][0]),
            dtype=torch.bool)
        self.register_buffer('calculated', calculated)

        gird8_offsets = torch.stack(
            torch.meshgrid([
                torch.tensor([-1, 0, 1]),
                torch.tensor([-1, 0, 1]),
                torch.tensor([-1, 0, 1])
            ])).int().view(3, -1).t()  # [27, 3]
        self.register_buffer('gird8_offsets', gird8_offsets)

        # smooth convs
        self.smooth_conv3x3 = SmoothConv3D(in_channels=1,
                                           out_channels=1,
                                           kernel_size=3)
        self.smooth_conv5x5 = SmoothConv3D(in_channels=1,
                                           out_channels=1,
                                           kernel_size=5)
        self.smooth_conv7x7 = SmoothConv3D(in_channels=1,
                                           out_channels=1,
                                           kernel_size=7)
        self.smooth_conv9x9 = SmoothConv3D(in_channels=1,
                                           out_channels=1,
                                           kernel_size=9)

    def batch_eval(self, coords, **kwargs):
        """
        coords: in the coordinates of last resolution
        **kwargs: for query_func
        """
        coords = coords.detach()
        # normalize coords to fit in [b_min, b_max]
        if self.align_corners:
            coords2D = coords.float() / (self.resolutions[-1] - 1)
        else:
            step = 1.0 / self.resolutions[-1].float()
            coords2D = coords.float() / self.resolutions[-1] + step / 2
        coords2D = coords2D * (self.b_max - self.b_min) + self.b_min
        # query function
        occupancys = self.query_func(**kwargs, points=coords2D)
        if type(occupancys) is list:
            occupancys = torch.stack(occupancys)  # [bz, C, N]
        assert len(occupancys.size()) == 3, \
            "query_func should return a occupancy with shape of [bz, C, N]"
        return occupancys

    def forward(self, **kwargs):
        if self.faster:
            return self._forward_faster(**kwargs)
        else:
            return self._forward(**kwargs)

    def _forward_faster(self, **kwargs):
        """
        In faster mode, we make following changes to exchange accuracy for speed:
        1. no conflict checking: 4.88 fps -> 6.56 fps
        2. smooth_conv9x9 ~ smooth_conv3x3 for different resolution
        3. last step no examine
        """
        final_W = self.resolutions[-1][0]
        final_H = self.resolutions[-1][1]
        final_D = self.resolutions[-1][2]

        for resolution in self.resolutions:
            W, H, D = resolution
            stride = (self.resolutions[-1] - 1) / (resolution - 1)

            # first step
            if torch.equal(resolution, self.resolutions[0]):
                coords = self.init_coords.clone()  # torch.long
                occupancys = self.batch_eval(coords, **kwargs)
                occupancys = occupancys.view(self.batchsize, self.channels, D,
                                             H, W)
                if (occupancys > 0.5).sum() == 0:
                    # return F.interpolate(
                    #     occupancys, size=(final_D, final_H, final_W),
                    #     mode="linear", align_corners=True)
                    return None

                if self.visualize:
                    self.plot(occupancys, coords, final_D, final_H, final_W)

                with torch.no_grad():
                    coords_accum = coords / stride

            # last step
            elif torch.equal(resolution, self.resolutions[-1]):

                with torch.no_grad():
                    # here true is correct!
                    valid = F.interpolate(
                        (occupancys > self.balance_value).float(),
                        size=(D, H, W),
                        mode="trilinear",
                        align_corners=True)

                # here true is correct!
                occupancys = F.interpolate(occupancys.float(),
                                           size=(D, H, W),
                                           mode="trilinear",
                                           align_corners=True)

                # is_boundary = (valid > 0.0) & (valid < 1.0)
                is_boundary = valid == 0.5

            # next steps
            else:
                coords_accum *= 2

                with torch.no_grad():
                    # here true is correct!
                    valid = F.interpolate(
                        (occupancys > self.balance_value).float(),
                        size=(D, H, W),
                        mode="trilinear",
                        align_corners=True)

                # here true is correct!
                occupancys = F.interpolate(occupancys.float(),
                                           size=(D, H, W),
                                           mode="trilinear",
                                           align_corners=True)

                is_boundary = (valid > 0.0) & (valid < 1.0)

                with torch.no_grad():
                    if torch.equal(resolution, self.resolutions[1]):
                        is_boundary = (self.smooth_conv9x9(is_boundary.float())
                                       > 0)[0, 0]
                    elif torch.equal(resolution, self.resolutions[2]):
                        is_boundary = (self.smooth_conv7x7(is_boundary.float())
                                       > 0)[0, 0]
                    else:
                        is_boundary = (self.smooth_conv3x3(is_boundary.float())
                                       > 0)[0, 0]

                    coords_accum = coords_accum.long()
                    is_boundary[coords_accum[0, :, 2], coords_accum[0, :, 1],
                                coords_accum[0, :, 0]] = False
                    point_coords = is_boundary.permute(
                        2, 1, 0).nonzero(as_tuple=False).unsqueeze(0)
                    point_indices = (point_coords[:, :, 2] * H * W +
                                     point_coords[:, :, 1] * W +
                                     point_coords[:, :, 0])

                    R, C, D, H, W = occupancys.shape

                    # inferred value
                    coords = point_coords * stride

                if coords.size(1) == 0:
                    continue
                occupancys_topk = self.batch_eval(coords, **kwargs)

                # put mask point predictions to the right places on the upsampled grid.
                R, C, D, H, W = occupancys.shape
                point_indices = point_indices.unsqueeze(1).expand(-1, C, -1)
                occupancys = (occupancys.reshape(R, C, D * H * W).scatter_(
                    2, point_indices, occupancys_topk).view(R, C, D, H, W))

                with torch.no_grad():
                    voxels = coords / stride
                    coords_accum = torch.cat([voxels, coords_accum],
                                             dim=1).unique(dim=1)

        return occupancys[0, 0]

    def _forward(self, **kwargs):
        """
        output occupancy field would be:
        (bz, C, res, res)
        """
        final_W = self.resolutions[-1][0]
        final_H = self.resolutions[-1][1]
        final_D = self.resolutions[-1][2]

        calculated = self.calculated.clone()

        for resolution in self.resolutions:
            W, H, D = resolution
            stride = (self.resolutions[-1] - 1) / (resolution - 1)

            if self.visualize:
                this_stage_coords = []

            # first step
            if torch.equal(resolution, self.resolutions[0]):
                coords = self.init_coords.clone()  # torch.long
                occupancys = self.batch_eval(coords, **kwargs)
                occupancys = occupancys.view(self.batchsize, self.channels, D,
                                             H, W)

                if self.visualize:
                    self.plot(occupancys, coords, final_D, final_H, final_W)

                with torch.no_grad():
                    coords_accum = coords / stride
                    calculated[coords[0, :, 2], coords[0, :, 1],
                               coords[0, :, 0]] = True

            # next steps
            else:
                coords_accum *= 2

                with torch.no_grad():
                    # here true is correct!
                    valid = F.interpolate(
                        (occupancys > self.balance_value).float(),
                        size=(D, H, W),
                        mode="trilinear",
                        align_corners=True)

                # here true is correct!
                occupancys = F.interpolate(occupancys.float(),
                                           size=(D, H, W),
                                           mode="trilinear",
                                           align_corners=True)

                is_boundary = (valid > 0.0) & (valid < 1.0)

                with torch.no_grad():
                    # TODO
                    if self.use_shadow and torch.equal(resolution,
                                                       self.resolutions[-1]):
                        # larger z means smaller depth here
                        depth_res = resolution[2].item()
                        depth_index = torch.linspace(0,
                                                     depth_res - 1,
                                                     steps=depth_res).type_as(
                                                         occupancys.device)
                        depth_index_max = torch.max(
                            (occupancys > self.balance_value) *
                            (depth_index + 1),
                            dim=-1,
                            keepdim=True)[0] - 1
                        shadow = depth_index < depth_index_max
                        is_boundary[shadow] = False
                        is_boundary = is_boundary[0, 0]
                    else:
                        is_boundary = (self.smooth_conv3x3(is_boundary.float())
                                       > 0)[0, 0]
                        # is_boundary = is_boundary[0, 0]

                    is_boundary[coords_accum[0, :, 2], coords_accum[0, :, 1],
                                coords_accum[0, :, 0]] = False
                    point_coords = is_boundary.permute(
                        2, 1, 0).nonzero(as_tuple=False).unsqueeze(0)
                    point_indices = (point_coords[:, :, 2] * H * W +
                                     point_coords[:, :, 1] * W +
                                     point_coords[:, :, 0])

                    R, C, D, H, W = occupancys.shape
                    # interpolated value
                    occupancys_interp = torch.gather(
                        occupancys.reshape(R, C, D * H * W), 2,
                        point_indices.unsqueeze(1))

                    # inferred value
                    coords = point_coords * stride

                if coords.size(1) == 0:
                    continue
                occupancys_topk = self.batch_eval(coords, **kwargs)
                if self.visualize:
                    this_stage_coords.append(coords)

                # put mask point predictions to the right places on the upsampled grid.
                R, C, D, H, W = occupancys.shape
                point_indices = point_indices.unsqueeze(1).expand(-1, C, -1)
                occupancys = (occupancys.reshape(R, C, D * H * W).scatter_(
                    2, point_indices, occupancys_topk).view(R, C, D, H, W))

                with torch.no_grad():
                    # conflicts
                    conflicts = ((occupancys_interp - self.balance_value) *
                                 (occupancys_topk - self.balance_value) < 0)[0,
                                                                             0]

                    if self.visualize:
                        self.plot(occupancys, coords, final_D, final_H,
                                  final_W)

                    voxels = coords / stride
                    coords_accum = torch.cat([voxels, coords_accum],
                                             dim=1).unique(dim=1)
                    calculated[coords[0, :, 2], coords[0, :, 1],
                               coords[0, :, 0]] = True

                while conflicts.sum() > 0:
                    if self.use_shadow and torch.equal(resolution,
                                                       self.resolutions[-1]):
                        break

                    with torch.no_grad():
                        conflicts_coords = coords[0, conflicts, :]

                        if self.debug:
                            self.plot(occupancys,
                                      conflicts_coords.unsqueeze(0),
                                      final_D,
                                      final_H,
                                      final_W,
                                      title='conflicts')

                        conflicts_boundary = (conflicts_coords.int() +
                                              self.gird8_offsets.unsqueeze(1) *
                                              stride.int()).reshape(
                                                  -1, 3).long().unique(dim=0)
                        conflicts_boundary[:, 0] = (
                            conflicts_boundary[:, 0].clamp(
                                0,
                                calculated.size(2) - 1))
                        conflicts_boundary[:, 1] = (
                            conflicts_boundary[:, 1].clamp(
                                0,
                                calculated.size(1) - 1))
                        conflicts_boundary[:, 2] = (
                            conflicts_boundary[:, 2].clamp(
                                0,
                                calculated.size(0) - 1))

                        coords = conflicts_boundary[calculated[
                            conflicts_boundary[:, 2], conflicts_boundary[:, 1],
                            conflicts_boundary[:, 0]] == False]

                        if self.debug:
                            self.plot(occupancys,
                                      coords.unsqueeze(0),
                                      final_D,
                                      final_H,
                                      final_W,
                                      title='coords')

                        coords = coords.unsqueeze(0)
                        point_coords = coords / stride
                        point_indices = (point_coords[:, :, 2] * H * W +
                                         point_coords[:, :, 1] * W +
                                         point_coords[:, :, 0])

                        R, C, D, H, W = occupancys.shape
                        # interpolated value
                        occupancys_interp = torch.gather(
                            occupancys.reshape(R, C, D * H * W), 2,
                            point_indices.unsqueeze(1))

                        # inferred value
                        coords = point_coords * stride

                    if coords.size(1) == 0:
                        break
                    occupancys_topk = self.batch_eval(coords, **kwargs)
                    if self.visualize:
                        this_stage_coords.append(coords)

                    with torch.no_grad():
                        # conflicts
                        conflicts = ((occupancys_interp - self.balance_value) *
                                     (occupancys_topk - self.balance_value) <
                                     0)[0, 0]

                    # put mask point predictions to the right places on the upsampled grid.
                    point_indices = point_indices.unsqueeze(1).expand(
                        -1, C, -1)
                    occupancys = (occupancys.reshape(R, C, D * H * W).scatter_(
                        2, point_indices, occupancys_topk).view(R, C, D, H, W))

                    with torch.no_grad():
                        voxels = coords / stride
                        coords_accum = torch.cat([voxels, coords_accum],
                                                 dim=1).unique(dim=1)
                        calculated[coords[0, :, 2], coords[0, :, 1],
                                   coords[0, :, 0]] = True

                if self.visualize:
                    this_stage_coords = torch.cat(this_stage_coords, dim=1)
                    self.plot(occupancys, this_stage_coords, final_D, final_H,
                              final_W)

        return occupancys[0, 0]

    def plot(self,
             occupancys,
             coords,
             final_D,
             final_H,
             final_W,
             title='',
             **kwargs):
        final = F.interpolate(occupancys.float(),
                              size=(final_D, final_H, final_W),
                              mode="trilinear",
                              align_corners=True)  # here true is correct!
        x = coords[0, :, 0].to("cpu")
        y = coords[0, :, 1].to("cpu")
        z = coords[0, :, 2].to("cpu")

        plot_mask3D(final[0, 0].to("cpu"), title, (x, y, z), **kwargs)

    def find_vertices(self, sdf, direction="front"):
        '''
            - direction: "front" | "back" | "left" | "right"
        '''
        resolution = sdf.size(2)
        if direction == "front":
            pass
        elif direction == "left":
            sdf = sdf.permute(2, 1, 0)
        elif direction == "back":
            inv_idx = torch.arange(sdf.size(2) - 1, -1, -1).long()
            sdf = sdf[inv_idx, :, :]
        elif direction == "right":
            inv_idx = torch.arange(sdf.size(2) - 1, -1, -1).long()
            sdf = sdf[:, :, inv_idx]
            sdf = sdf.permute(2, 1, 0)

        inv_idx = torch.arange(sdf.size(2) - 1, -1, -1).long()
        sdf = sdf[inv_idx, :, :]
        sdf_all = sdf.permute(2, 1, 0)

        # shadow
        grad_v = (sdf_all > 0.5) * torch.linspace(
            resolution, 1, steps=resolution).to(sdf.device)
        grad_c = torch.ones_like(sdf_all) * torch.linspace(
            0, resolution - 1, steps=resolution).to(sdf.device)
        max_v, max_c = grad_v.max(dim=2)
        shadow = grad_c > max_c.view(resolution, resolution, 1)
        keep = (sdf_all > 0.5) & (~shadow)

        p1 = keep.nonzero(as_tuple=False).t()  # [3, N]
        p2 = p1.clone()  # z
        p2[2, :] = (p2[2, :] - 2).clamp(0, resolution)
        p3 = p1.clone()  # y
        p3[1, :] = (p3[1, :] - 2).clamp(0, resolution)
        p4 = p1.clone()  # x
        p4[0, :] = (p4[0, :] - 2).clamp(0, resolution)

        v1 = sdf_all[p1[0, :], p1[1, :], p1[2, :]]
        v2 = sdf_all[p2[0, :], p2[1, :], p2[2, :]]
        v3 = sdf_all[p3[0, :], p3[1, :], p3[2, :]]
        v4 = sdf_all[p4[0, :], p4[1, :], p4[2, :]]

        X = p1[0, :].long()  # [N,]
        Y = p1[1, :].long()  # [N,]
        Z = p2[2, :].float() * (0.5 - v1) / (v2 - v1) + \
            p1[2, :].float() * (v2 - 0.5) / (v2 - v1)  # [N,]
        Z = Z.clamp(0, resolution)

        # normal
        norm_z = v2 - v1
        norm_y = v3 - v1
        norm_x = v4 - v1
        # print (v2.min(dim=0)[0], v2.max(dim=0)[0], v3.min(dim=0)[0], v3.max(dim=0)[0])

        norm = torch.stack([norm_x, norm_y, norm_z], dim=1)
        norm = norm / torch.norm(norm, p=2, dim=1, keepdim=True)

        return X, Y, Z, norm

    def render_normal(self, resolution, X, Y, Z, norm):
        image = torch.ones((1, 3, resolution, resolution),
                           dtype=torch.float32).to(norm.device)
        color = (norm + 1) / 2.0
        color = color.clamp(0, 1)
        image[0, :, Y, X] = color.t()
        return image

    def display(self, sdf):

        # render
        X, Y, Z, norm = self.find_vertices(sdf, direction="front")
        image1 = self.render_normal(self.resolutions[-1, -1], X, Y, Z, norm)
        X, Y, Z, norm = self.find_vertices(sdf, direction="left")
        image2 = self.render_normal(self.resolutions[-1, -1], X, Y, Z, norm)
        X, Y, Z, norm = self.find_vertices(sdf, direction="right")
        image3 = self.render_normal(self.resolutions[-1, -1], X, Y, Z, norm)
        X, Y, Z, norm = self.find_vertices(sdf, direction="back")
        image4 = self.render_normal(self.resolutions[-1, -1], X, Y, Z, norm)

        image = torch.cat([image1, image2, image3, image4], axis=3)
        image = image.detach().cpu().numpy()[0].transpose(1, 2, 0) * 255.0

        return np.uint8(image)

    def export_mesh(self, occupancys):

        final = occupancys[1:, 1:, 1:].contiguous()

        if final.shape[0] > 256:
            # for voxelgrid larger than 256^3, the required GPU memory will be > 9GB
            # thus we use CPU marching_cube to avoid "CUDA out of memory"
            occu_arr = final.detach().cpu().numpy()                 # non-smooth surface
            # occu_arr = mcubes.smooth(final.detach().cpu().numpy())  # smooth surface
            vertices, triangles = mcubes.marching_cubes(
                occu_arr, self.balance_value)
            verts = torch.as_tensor(vertices[:, [2, 1, 0]])
            faces = torch.as_tensor(triangles.astype(
                np.long), dtype=torch.long)[:, [0, 2, 1]]
        else:
            torch.cuda.empty_cache()
            vertices, triangles = voxelgrids_to_trianglemeshes(
                final.unsqueeze(0))
            verts = vertices[0][:, [2, 1, 0]].cpu()
            faces = triangles[0][:, [0, 2, 1]].cpu()

        return verts, faces