Spaces:
Runtime error
Runtime error
# -*- coding: utf-8 -*- | |
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is | |
# holder of all proprietary rights on this computer program. | |
# You can only use this computer program if you have closed | |
# a license agreement with MPG or you get the right to use the computer | |
# program from someone who is authorized to grant you that right. | |
# Any use of the computer program without a valid license is prohibited and | |
# liable to prosecution. | |
# | |
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung | |
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute | |
# for Intelligent Systems. All rights reserved. | |
# | |
# Contact: [email protected] | |
import numpy as np | |
import cv2 | |
import torch | |
import torchvision | |
import trimesh | |
from pytorch3d.io import load_obj | |
from termcolor import colored | |
from scipy.spatial import cKDTree | |
from pytorch3d.structures import Meshes | |
import torch.nn.functional as F | |
import os | |
from lib.pymaf.utils.imutils import uncrop | |
from lib.common.render_utils import Pytorch3dRasterizer, face_vertices | |
from pytorch3d.renderer.mesh import rasterize_meshes | |
from PIL import Image, ImageFont, ImageDraw | |
from kaolin.ops.mesh import check_sign | |
from kaolin.metrics.trianglemesh import point_to_mesh_distance | |
from pytorch3d.loss import ( | |
mesh_laplacian_smoothing, | |
mesh_normal_consistency | |
) | |
from huggingface_hub import hf_hub_download, hf_hub_url, cached_download | |
def rot6d_to_rotmat(x): | |
"""Convert 6D rotation representation to 3x3 rotation matrix. | |
Based on Zhou et al., "On the Continuity of Rotation Representations in Neural Networks", CVPR 2019 | |
Input: | |
(B,6) Batch of 6-D rotation representations | |
Output: | |
(B,3,3) Batch of corresponding rotation matrices | |
""" | |
x = x.view(-1, 3, 2) | |
a1 = x[:, :, 0] | |
a2 = x[:, :, 1] | |
b1 = F.normalize(a1) | |
b2 = F.normalize(a2 - torch.einsum("bi,bi->b", b1, a2).unsqueeze(-1) * b1) | |
b3 = torch.cross(b1, b2) | |
return torch.stack((b1, b2, b3), dim=-1) | |
def tensor2variable(tensor, device): | |
# [1,23,3,3] | |
return torch.tensor(tensor, device=device, requires_grad=True) | |
def normal_loss(vec1, vec2): | |
# vec1_mask = vec1.sum(dim=1) != 0.0 | |
# vec2_mask = vec2.sum(dim=1) != 0.0 | |
# union_mask = vec1_mask * vec2_mask | |
vec_sim = torch.nn.CosineSimilarity(dim=1, eps=1e-6)(vec1, vec2) | |
# vec_diff = ((vec_sim-1.0)**2)[union_mask].mean() | |
vec_diff = ((vec_sim-1.0)**2).mean() | |
return vec_diff | |
class GMoF(torch.nn.Module): | |
def __init__(self, rho=1): | |
super(GMoF, self).__init__() | |
self.rho = rho | |
def extra_repr(self): | |
return 'rho = {}'.format(self.rho) | |
def forward(self, residual): | |
dist = torch.div(residual, residual + self.rho ** 2) | |
return self.rho ** 2 * dist | |
def mesh_edge_loss(meshes, target_length: float = 0.0): | |
""" | |
Computes mesh edge length regularization loss averaged across all meshes | |
in a batch. Each mesh contributes equally to the final loss, regardless of | |
the number of edges per mesh in the batch by weighting each mesh with the | |
inverse number of edges. For example, if mesh 3 (out of N) has only E=4 | |
edges, then the loss for each edge in mesh 3 should be multiplied by 1/E to | |
contribute to the final loss. | |
Args: | |
meshes: Meshes object with a batch of meshes. | |
target_length: Resting value for the edge length. | |
Returns: | |
loss: Average loss across the batch. Returns 0 if meshes contains | |
no meshes or all empty meshes. | |
""" | |
if meshes.isempty(): | |
return torch.tensor( | |
[0.0], dtype=torch.float32, device=meshes.device, requires_grad=True | |
) | |
N = len(meshes) | |
edges_packed = meshes.edges_packed() # (sum(E_n), 3) | |
verts_packed = meshes.verts_packed() # (sum(V_n), 3) | |
edge_to_mesh_idx = meshes.edges_packed_to_mesh_idx() # (sum(E_n), ) | |
num_edges_per_mesh = meshes.num_edges_per_mesh() # N | |
# Determine the weight for each edge based on the number of edges in the | |
# mesh it corresponds to. | |
# TODO (nikhilar) Find a faster way of computing the weights for each edge | |
# as this is currently a bottleneck for meshes with a large number of faces. | |
weights = num_edges_per_mesh.gather(0, edge_to_mesh_idx) | |
weights = 1.0 / weights.float() | |
verts_edges = verts_packed[edges_packed] | |
v0, v1 = verts_edges.unbind(1) | |
loss = ((v0 - v1).norm(dim=1, p=2) - target_length) ** 2.0 | |
loss_vertex = loss * weights | |
# loss_outlier = torch.topk(loss, 100)[0].mean() | |
# loss_all = (loss_vertex.sum() + loss_outlier.mean()) / N | |
loss_all = loss_vertex.sum() / N | |
return loss_all | |
def remesh(obj_path, perc, device): | |
mesh = trimesh.load(obj_path) | |
mesh = mesh.simplify_quadratic_decimation(50000) | |
mesh = trimesh.smoothing.filter_humphrey( | |
mesh, alpha=0.1, beta=0.5, iterations=10, laplacian_operator=None | |
) | |
mesh.export(obj_path.replace("recon", "remesh")) | |
verts_pr = torch.tensor(mesh.vertices).float().unsqueeze(0).to(device) | |
faces_pr = torch.tensor(mesh.faces).long().unsqueeze(0).to(device) | |
return verts_pr, faces_pr | |
def get_mask(tensor, dim): | |
mask = torch.abs(tensor).sum(dim=dim, keepdims=True) > 0.0 | |
mask = mask.type_as(tensor) | |
return mask | |
def blend_rgb_norm(rgb, norm, mask): | |
# [0,0,0] or [127,127,127] should be marked as mask | |
final = rgb * (1-mask) + norm * (mask) | |
return final.astype(np.uint8) | |
def unwrap(image, data): | |
img_uncrop = uncrop(np.array(Image.fromarray(image).resize(data['uncrop_param']['box_shape'][:2])), | |
data['uncrop_param']['center'], | |
data['uncrop_param']['scale'], | |
data['uncrop_param']['crop_shape']) | |
img_orig = cv2.warpAffine(img_uncrop, | |
np.linalg.inv(data['uncrop_param']['M'])[:2, :], | |
data['uncrop_param']['ori_shape'][::-1][1:], | |
flags=cv2.INTER_CUBIC) | |
return img_orig | |
# Losses to smooth / regularize the mesh shape | |
def update_mesh_shape_prior_losses(mesh, losses): | |
# and (b) the edge length of the predicted mesh | |
losses["edge"]['value'] = mesh_edge_loss(mesh) | |
# mesh normal consistency | |
losses["nc"]['value'] = mesh_normal_consistency(mesh) | |
# mesh laplacian smoothing | |
losses["laplacian"]['value'] = mesh_laplacian_smoothing( | |
mesh, method="uniform") | |
def rename(old_dict, old_name, new_name): | |
new_dict = {} | |
for key, value in zip(old_dict.keys(), old_dict.values()): | |
new_key = key if key != old_name else new_name | |
new_dict[new_key] = old_dict[key] | |
return new_dict | |
def load_checkpoint(model, cfg): | |
model_dict = model.state_dict() | |
main_dict = {} | |
normal_dict = {} | |
device = torch.device(f"cuda:{cfg['test_gpus'][0]}") | |
main_dict = torch.load(cached_download(cfg.resume_path, use_auth_token=os.environ['ICON']), | |
map_location=device)['state_dict'] | |
main_dict = { | |
k: v | |
for k, v in main_dict.items() | |
if k in model_dict and v.shape == model_dict[k].shape and ( | |
'reconEngine' not in k) and ("normal_filter" not in k) and ( | |
'voxelization' not in k) | |
} | |
print(colored(f"Resume MLP weights from {cfg.resume_path}", 'green')) | |
normal_dict = torch.load(cached_download(cfg.normal_path, use_auth_token=os.environ['ICON']), | |
map_location=device)['state_dict'] | |
for key in normal_dict.keys(): | |
normal_dict = rename(normal_dict, key, | |
key.replace("netG", "netG.normal_filter")) | |
normal_dict = { | |
k: v | |
for k, v in normal_dict.items() | |
if k in model_dict and v.shape == model_dict[k].shape | |
} | |
print(colored(f"Resume normal model from {cfg.normal_path}", 'green')) | |
model_dict.update(main_dict) | |
model_dict.update(normal_dict) | |
model.load_state_dict(model_dict) | |
model.netG = model.netG.to(device) | |
model.reconEngine = model.reconEngine.to(device) | |
model.netG.training = False | |
model.netG.eval() | |
del main_dict | |
del normal_dict | |
del model_dict | |
return model | |
def read_smpl_constants(folder): | |
"""Load smpl vertex code""" | |
smpl_vtx_std = np.loadtxt(cached_download(os.path.join(folder, 'vertices.txt'), use_auth_token=os.environ['ICON'])) | |
min_x = np.min(smpl_vtx_std[:, 0]) | |
max_x = np.max(smpl_vtx_std[:, 0]) | |
min_y = np.min(smpl_vtx_std[:, 1]) | |
max_y = np.max(smpl_vtx_std[:, 1]) | |
min_z = np.min(smpl_vtx_std[:, 2]) | |
max_z = np.max(smpl_vtx_std[:, 2]) | |
smpl_vtx_std[:, 0] = (smpl_vtx_std[:, 0] - min_x) / (max_x - min_x) | |
smpl_vtx_std[:, 1] = (smpl_vtx_std[:, 1] - min_y) / (max_y - min_y) | |
smpl_vtx_std[:, 2] = (smpl_vtx_std[:, 2] - min_z) / (max_z - min_z) | |
smpl_vertex_code = np.float32(np.copy(smpl_vtx_std)) | |
"""Load smpl faces & tetrahedrons""" | |
smpl_faces = np.loadtxt(cached_download(os.path.join(folder, 'faces.txt'), use_auth_token=os.environ['ICON']), | |
dtype=np.int32) - 1 | |
smpl_face_code = (smpl_vertex_code[smpl_faces[:, 0]] + | |
smpl_vertex_code[smpl_faces[:, 1]] + | |
smpl_vertex_code[smpl_faces[:, 2]]) / 3.0 | |
smpl_tetras = np.loadtxt(cached_download(os.path.join(folder, 'tetrahedrons.txt'), use_auth_token=os.environ['ICON']), | |
dtype=np.int32) - 1 | |
return smpl_vertex_code, smpl_face_code, smpl_faces, smpl_tetras | |
def feat_select(feat, select): | |
# feat [B, featx2, N] | |
# select [B, 1, N] | |
# return [B, feat, N] | |
dim = feat.shape[1] // 2 | |
idx = torch.tile((1-select), (1, dim, 1))*dim + \ | |
torch.arange(0, dim).unsqueeze(0).unsqueeze(2).type_as(select) | |
feat_select = torch.gather(feat, 1, idx.long()) | |
return feat_select | |
def get_visibility(xy, z, faces): | |
"""get the visibility of vertices | |
Args: | |
xy (torch.tensor): [N,2] | |
z (torch.tensor): [N,1] | |
faces (torch.tensor): [N,3] | |
size (int): resolution of rendered image | |
""" | |
xyz = torch.cat((xy, -z), dim=1) | |
xyz = (xyz + 1.0) / 2.0 | |
faces = faces.long() | |
rasterizer = Pytorch3dRasterizer(image_size=2**12) | |
meshes_screen = Meshes(verts=xyz[None, ...], faces=faces[None, ...]) | |
raster_settings = rasterizer.raster_settings | |
pix_to_face, zbuf, bary_coords, dists = rasterize_meshes( | |
meshes_screen, | |
image_size=raster_settings.image_size, | |
blur_radius=raster_settings.blur_radius, | |
faces_per_pixel=raster_settings.faces_per_pixel, | |
bin_size=raster_settings.bin_size, | |
max_faces_per_bin=raster_settings.max_faces_per_bin, | |
perspective_correct=raster_settings.perspective_correct, | |
cull_backfaces=raster_settings.cull_backfaces, | |
) | |
vis_vertices_id = torch.unique(faces[torch.unique(pix_to_face), :]) | |
vis_mask = torch.zeros(size=(z.shape[0], 1)) | |
vis_mask[vis_vertices_id] = 1.0 | |
# print("------------------------\n") | |
# print(f"keep points : {vis_mask.sum()/len(vis_mask)}") | |
return vis_mask | |
def barycentric_coordinates_of_projection(points, vertices): | |
''' https://github.com/MPI-IS/mesh/blob/master/mesh/geometry/barycentric_coordinates_of_projection.py | |
''' | |
"""Given a point, gives projected coords of that point to a triangle | |
in barycentric coordinates. | |
See | |
**Heidrich**, Computing the Barycentric Coordinates of a Projected Point, JGT 05 | |
at http://www.cs.ubc.ca/~heidrich/Papers/JGT.05.pdf | |
:param p: point to project. [B, 3] | |
:param v0: first vertex of triangles. [B, 3] | |
:returns: barycentric coordinates of ``p``'s projection in triangle defined by ``q``, ``u``, ``v`` | |
vectorized so ``p``, ``q``, ``u``, ``v`` can all be ``3xN`` | |
""" | |
#(p, q, u, v) | |
v0, v1, v2 = vertices[:, 0], vertices[:, 1], vertices[:, 2] | |
p = points | |
q = v0 | |
u = v1 - v0 | |
v = v2 - v0 | |
n = torch.cross(u, v) | |
s = torch.sum(n * n, dim=1) | |
# If the triangle edges are collinear, cross-product is zero, | |
# which makes "s" 0, which gives us divide by zero. So we | |
# make the arbitrary choice to set s to epsv (=numpy.spacing(1)), | |
# the closest thing to zero | |
s[s == 0] = 1e-6 | |
oneOver4ASquared = 1.0 / s | |
w = p - q | |
b2 = torch.sum(torch.cross(u, w) * n, dim=1) * oneOver4ASquared | |
b1 = torch.sum(torch.cross(w, v) * n, dim=1) * oneOver4ASquared | |
weights = torch.stack((1 - b1 - b2, b1, b2), dim=-1) | |
# check barycenric weights | |
# p_n = v0*weights[:,0:1] + v1*weights[:,1:2] + v2*weights[:,2:3] | |
return weights | |
def cal_sdf_batch(verts, faces, cmaps, vis, points): | |
# verts [B, N_vert, 3] | |
# faces [B, N_face, 3] | |
# triangles [B, N_face, 3, 3] | |
# points [B, N_point, 3] | |
# cmaps [B, N_vert, 3] | |
Bsize = points.shape[0] | |
normals = Meshes(verts, faces).verts_normals_padded() | |
triangles = face_vertices(verts, faces) | |
normals = face_vertices(normals, faces) | |
cmaps = face_vertices(cmaps, faces) | |
vis = face_vertices(vis, faces) | |
residues, pts_ind, _ = point_to_mesh_distance(points, triangles) | |
closest_triangles = torch.gather( | |
triangles, 1, pts_ind[:, :, None, None].expand(-1, -1, 3, 3)).view(-1, 3, 3) | |
closest_normals = torch.gather( | |
normals, 1, pts_ind[:, :, None, None].expand(-1, -1, 3, 3)).view(-1, 3, 3) | |
closest_cmaps = torch.gather( | |
cmaps, 1, pts_ind[:, :, None, None].expand(-1, -1, 3, 3)).view(-1, 3, 3) | |
closest_vis = torch.gather( | |
vis, 1, pts_ind[:, :, None, None].expand(-1, -1, 3, 1)).view(-1, 3, 1) | |
bary_weights = barycentric_coordinates_of_projection( | |
points.view(-1, 3), closest_triangles) | |
pts_cmap = (closest_cmaps*bary_weights[:, :, None]).sum(1).unsqueeze(0).clamp_(min=0.0, max=1.0) | |
pts_vis = (closest_vis*bary_weights[:, | |
:, None]).sum(1).unsqueeze(0).ge(1e-1) | |
pts_norm = (closest_normals*bary_weights[:, :, None]).sum( | |
1).unsqueeze(0) * torch.tensor([-1.0, 1.0, -1.0]).type_as(normals) | |
pts_norm = F.normalize(pts_norm, dim=2) | |
pts_dist = torch.sqrt(residues) / torch.sqrt(torch.tensor(3)) | |
pts_signs = 2.0 * (check_sign(verts, faces[0], points).float() - 0.5) | |
pts_sdf = (pts_dist * pts_signs).unsqueeze(-1) | |
return pts_sdf.view(Bsize, -1, 1), pts_norm.view(Bsize, -1, 3), pts_cmap.view(Bsize, -1, 3), pts_vis.view(Bsize, -1, 1) | |
def orthogonal(points, calibrations, transforms=None): | |
''' | |
Compute the orthogonal projections of 3D points into the image plane by given projection matrix | |
:param points: [B, 3, N] Tensor of 3D points | |
:param calibrations: [B, 3, 4] Tensor of projection matrix | |
:param transforms: [B, 2, 3] Tensor of image transform matrix | |
:return: xyz: [B, 3, N] Tensor of xyz coordinates in the image plane | |
''' | |
rot = calibrations[:, :3, :3] | |
trans = calibrations[:, :3, 3:4] | |
pts = torch.baddbmm(trans, rot, points) # [B, 3, N] | |
if transforms is not None: | |
scale = transforms[:2, :2] | |
shift = transforms[:2, 2:3] | |
pts[:, :2, :] = torch.baddbmm(shift, scale, pts[:, :2, :]) | |
return pts | |
def projection(points, calib, format='numpy'): | |
if format == 'tensor': | |
return torch.mm(calib[:3, :3], points.T).T + calib[:3, 3] | |
else: | |
return np.matmul(calib[:3, :3], points.T).T + calib[:3, 3] | |
def load_calib(calib_path): | |
calib_data = np.loadtxt(calib_path, dtype=float) | |
extrinsic = calib_data[:4, :4] | |
intrinsic = calib_data[4:8, :4] | |
calib_mat = np.matmul(intrinsic, extrinsic) | |
calib_mat = torch.from_numpy(calib_mat).float() | |
return calib_mat | |
def load_obj_mesh_for_Hoppe(mesh_file): | |
vertex_data = [] | |
face_data = [] | |
if isinstance(mesh_file, str): | |
f = open(mesh_file, "r") | |
else: | |
f = mesh_file | |
for line in f: | |
if isinstance(line, bytes): | |
line = line.decode("utf-8") | |
if line.startswith('#'): | |
continue | |
values = line.split() | |
if not values: | |
continue | |
if values[0] == 'v': | |
v = list(map(float, values[1:4])) | |
vertex_data.append(v) | |
elif values[0] == 'f': | |
# quad mesh | |
if len(values) > 4: | |
f = list(map(lambda x: int(x.split('/')[0]), values[1:4])) | |
face_data.append(f) | |
f = list( | |
map(lambda x: int(x.split('/')[0]), | |
[values[3], values[4], values[1]])) | |
face_data.append(f) | |
# tri mesh | |
else: | |
f = list(map(lambda x: int(x.split('/')[0]), values[1:4])) | |
face_data.append(f) | |
vertices = np.array(vertex_data) | |
faces = np.array(face_data) | |
faces[faces > 0] -= 1 | |
normals, _ = compute_normal(vertices, faces) | |
return vertices, normals, faces | |
def load_obj_mesh_with_color(mesh_file): | |
vertex_data = [] | |
color_data = [] | |
face_data = [] | |
if isinstance(mesh_file, str): | |
f = open(mesh_file, "r") | |
else: | |
f = mesh_file | |
for line in f: | |
if isinstance(line, bytes): | |
line = line.decode("utf-8") | |
if line.startswith('#'): | |
continue | |
values = line.split() | |
if not values: | |
continue | |
if values[0] == 'v': | |
v = list(map(float, values[1:4])) | |
vertex_data.append(v) | |
c = list(map(float, values[4:7])) | |
color_data.append(c) | |
elif values[0] == 'f': | |
# quad mesh | |
if len(values) > 4: | |
f = list(map(lambda x: int(x.split('/')[0]), values[1:4])) | |
face_data.append(f) | |
f = list( | |
map(lambda x: int(x.split('/')[0]), | |
[values[3], values[4], values[1]])) | |
face_data.append(f) | |
# tri mesh | |
else: | |
f = list(map(lambda x: int(x.split('/')[0]), values[1:4])) | |
face_data.append(f) | |
vertices = np.array(vertex_data) | |
colors = np.array(color_data) | |
faces = np.array(face_data) | |
faces[faces > 0] -= 1 | |
return vertices, colors, faces | |
def load_obj_mesh(mesh_file, with_normal=False, with_texture=False): | |
vertex_data = [] | |
norm_data = [] | |
uv_data = [] | |
face_data = [] | |
face_norm_data = [] | |
face_uv_data = [] | |
if isinstance(mesh_file, str): | |
f = open(mesh_file, "r") | |
else: | |
f = mesh_file | |
for line in f: | |
if isinstance(line, bytes): | |
line = line.decode("utf-8") | |
if line.startswith('#'): | |
continue | |
values = line.split() | |
if not values: | |
continue | |
if values[0] == 'v': | |
v = list(map(float, values[1:4])) | |
vertex_data.append(v) | |
elif values[0] == 'vn': | |
vn = list(map(float, values[1:4])) | |
norm_data.append(vn) | |
elif values[0] == 'vt': | |
vt = list(map(float, values[1:3])) | |
uv_data.append(vt) | |
elif values[0] == 'f': | |
# quad mesh | |
if len(values) > 4: | |
f = list(map(lambda x: int(x.split('/')[0]), values[1:4])) | |
face_data.append(f) | |
f = list( | |
map(lambda x: int(x.split('/')[0]), | |
[values[3], values[4], values[1]])) | |
face_data.append(f) | |
# tri mesh | |
else: | |
f = list(map(lambda x: int(x.split('/')[0]), values[1:4])) | |
face_data.append(f) | |
# deal with texture | |
if len(values[1].split('/')) >= 2: | |
# quad mesh | |
if len(values) > 4: | |
f = list(map(lambda x: int(x.split('/')[1]), values[1:4])) | |
face_uv_data.append(f) | |
f = list( | |
map(lambda x: int(x.split('/')[1]), | |
[values[3], values[4], values[1]])) | |
face_uv_data.append(f) | |
# tri mesh | |
elif len(values[1].split('/')[1]) != 0: | |
f = list(map(lambda x: int(x.split('/')[1]), values[1:4])) | |
face_uv_data.append(f) | |
# deal with normal | |
if len(values[1].split('/')) == 3: | |
# quad mesh | |
if len(values) > 4: | |
f = list(map(lambda x: int(x.split('/')[2]), values[1:4])) | |
face_norm_data.append(f) | |
f = list( | |
map(lambda x: int(x.split('/')[2]), | |
[values[3], values[4], values[1]])) | |
face_norm_data.append(f) | |
# tri mesh | |
elif len(values[1].split('/')[2]) != 0: | |
f = list(map(lambda x: int(x.split('/')[2]), values[1:4])) | |
face_norm_data.append(f) | |
vertices = np.array(vertex_data) | |
faces = np.array(face_data) | |
faces[faces > 0] -= 1 | |
if with_texture and with_normal: | |
uvs = np.array(uv_data) | |
face_uvs = np.array(face_uv_data) | |
face_uvs[face_uvs > 0] -= 1 | |
norms = np.array(norm_data) | |
if norms.shape[0] == 0: | |
norms, _ = compute_normal(vertices, faces) | |
face_normals = faces | |
else: | |
norms = normalize_v3(norms) | |
face_normals = np.array(face_norm_data) | |
face_normals[face_normals > 0] -= 1 | |
return vertices, faces, norms, face_normals, uvs, face_uvs | |
if with_texture: | |
uvs = np.array(uv_data) | |
face_uvs = np.array(face_uv_data) - 1 | |
return vertices, faces, uvs, face_uvs | |
if with_normal: | |
norms = np.array(norm_data) | |
norms = normalize_v3(norms) | |
face_normals = np.array(face_norm_data) - 1 | |
return vertices, faces, norms, face_normals | |
return vertices, faces | |
def normalize_v3(arr): | |
''' Normalize a numpy array of 3 component vectors shape=(n,3) ''' | |
lens = np.sqrt(arr[:, 0]**2 + arr[:, 1]**2 + arr[:, 2]**2) | |
eps = 0.00000001 | |
lens[lens < eps] = eps | |
arr[:, 0] /= lens | |
arr[:, 1] /= lens | |
arr[:, 2] /= lens | |
return arr | |
def compute_normal(vertices, faces): | |
# Create a zeroed array with the same type and shape as our vertices i.e., per vertex normal | |
vert_norms = np.zeros(vertices.shape, dtype=vertices.dtype) | |
# Create an indexed view into the vertex array using the array of three indices for triangles | |
tris = vertices[faces] | |
# Calculate the normal for all the triangles, by taking the cross product of the vectors v1-v0, and v2-v0 in each triangle | |
face_norms = np.cross(tris[::, 1] - tris[::, 0], tris[::, 2] - tris[::, 0]) | |
# n is now an array of normals per triangle. The length of each normal is dependent the vertices, | |
# we need to normalize these, so that our next step weights each normal equally. | |
normalize_v3(face_norms) | |
# now we have a normalized array of normals, one per triangle, i.e., per triangle normals. | |
# But instead of one per triangle (i.e., flat shading), we add to each vertex in that triangle, | |
# the triangles' normal. Multiple triangles would then contribute to every vertex, so we need to normalize again afterwards. | |
# The cool part, we can actually add the normals through an indexed view of our (zeroed) per vertex normal array | |
vert_norms[faces[:, 0]] += face_norms | |
vert_norms[faces[:, 1]] += face_norms | |
vert_norms[faces[:, 2]] += face_norms | |
normalize_v3(vert_norms) | |
return vert_norms, face_norms | |
def save_obj_mesh(mesh_path, verts, faces): | |
file = open(mesh_path, 'w') | |
for v in verts: | |
file.write('v %.4f %.4f %.4f\n' % (v[0], v[1], v[2])) | |
for f in faces: | |
f_plus = f + 1 | |
file.write('f %d %d %d\n' % (f_plus[0], f_plus[1], f_plus[2])) | |
file.close() | |
def save_obj_mesh_with_color(mesh_path, verts, faces, colors): | |
file = open(mesh_path, 'w') | |
for idx, v in enumerate(verts): | |
c = colors[idx] | |
file.write('v %.4f %.4f %.4f %.4f %.4f %.4f\n' % | |
(v[0], v[1], v[2], c[0], c[1], c[2])) | |
for f in faces: | |
f_plus = f + 1 | |
file.write('f %d %d %d\n' % (f_plus[0], f_plus[1], f_plus[2])) | |
file.close() | |
def calculate_mIoU(outputs, labels): | |
SMOOTH = 1e-6 | |
outputs = outputs.int() | |
labels = labels.int() | |
intersection = ( | |
outputs | |
& labels).float().sum() # Will be zero if Truth=0 or Prediction=0 | |
union = (outputs | labels).float().sum() # Will be zzero if both are 0 | |
iou = (intersection + SMOOTH) / (union + SMOOTH | |
) # We smooth our devision to avoid 0/0 | |
thresholded = torch.clamp( | |
20 * (iou - 0.5), 0, | |
10).ceil() / 10 # This is equal to comparing with thresolds | |
return thresholded.mean().detach().cpu().numpy( | |
) # Or thresholded.mean() if you are interested in average across the batch | |
def mask_filter(mask, number=1000): | |
"""only keep {number} True items within a mask | |
Args: | |
mask (bool array): [N, ] | |
number (int, optional): total True item. Defaults to 1000. | |
""" | |
true_ids = np.where(mask)[0] | |
keep_ids = np.random.choice(true_ids, size=number) | |
filter_mask = np.isin(np.arange(len(mask)), keep_ids) | |
return filter_mask | |
def query_mesh(path): | |
verts, faces_idx, _ = load_obj(path) | |
return verts, faces_idx.verts_idx | |
def add_alpha(colors, alpha=0.7): | |
colors_pad = np.pad(colors, ((0, 0), (0, 1)), | |
mode='constant', | |
constant_values=alpha) | |
return colors_pad | |
def get_optim_grid_image(per_loop_lst, loss=None, nrow=4, type='smpl'): | |
font_path = os.path.join(os.path.dirname(__file__), "tbfo.ttf") | |
font = ImageFont.truetype(font_path, 30) | |
grid_img = torchvision.utils.make_grid(torch.cat(per_loop_lst, dim=0), | |
nrow=nrow) | |
grid_img = Image.fromarray( | |
((grid_img.permute(1, 2, 0).detach().cpu().numpy() + 1.0) * 0.5 * | |
255.0).astype(np.uint8)) | |
# add text | |
draw = ImageDraw.Draw(grid_img) | |
grid_size = 512 | |
if loss is not None: | |
draw.text((10, 5), f"error: {loss:.3f}", (255, 0, 0), font=font) | |
if type == 'smpl': | |
for col_id, col_txt in enumerate( | |
['image', 'smpl-norm(render)', 'cloth-norm(pred)', 'diff-norm', 'diff-mask']): | |
draw.text((10+(col_id*grid_size), 5), | |
col_txt, (255, 0, 0), font=font) | |
elif type == 'cloth': | |
for col_id, col_txt in enumerate( | |
['image', 'cloth-norm(recon)', 'cloth-norm(pred)', 'diff-norm']): | |
draw.text((10+(col_id*grid_size), 5), | |
col_txt, (255, 0, 0), font=font) | |
for col_id, col_txt in enumerate( | |
['0', '90', '180', '270']): | |
draw.text((10+(col_id*grid_size), grid_size*2+5), | |
col_txt, (255, 0, 0), font=font) | |
else: | |
print(f"{type} should be 'smpl' or 'cloth'") | |
grid_img = grid_img.resize((grid_img.size[0], grid_img.size[1]), | |
Image.ANTIALIAS) | |
return grid_img | |
def clean_mesh(verts, faces): | |
device = verts.device | |
mesh_lst = trimesh.Trimesh(verts.detach().cpu().numpy(), | |
faces.detach().cpu().numpy()) | |
mesh_lst = mesh_lst.split(only_watertight=False) | |
comp_num = [mesh.vertices.shape[0] for mesh in mesh_lst] | |
mesh_clean = mesh_lst[comp_num.index(max(comp_num))] | |
final_verts = torch.as_tensor(mesh_clean.vertices).float().to(device) | |
final_faces = torch.as_tensor(mesh_clean.faces).int().to(device) | |
return final_verts, final_faces | |
def merge_mesh(verts_A, faces_A, verts_B, faces_B, color=False): | |
sep_mesh = trimesh.Trimesh(np.concatenate([verts_A, verts_B], axis=0), | |
np.concatenate( | |
[faces_A, faces_B + faces_A.max() + 1], | |
axis=0), | |
maintain_order=True, | |
process=False) | |
if color: | |
colors = np.ones_like(sep_mesh.vertices) | |
colors[:verts_A.shape[0]] *= np.array([255.0, 0.0, 0.0]) | |
colors[verts_A.shape[0]:] *= np.array([0.0, 255.0, 0.0]) | |
sep_mesh.visual.vertex_colors = colors | |
# union_mesh = trimesh.boolean.union([trimesh.Trimesh(verts_A, faces_A), | |
# trimesh.Trimesh(verts_B, faces_B)], engine='blender') | |
return sep_mesh | |
def mesh_move(mesh_lst, step, scale=1.0): | |
trans = np.array([1.0, 0.0, 0.0]) * step | |
resize_matrix = trimesh.transformations.scale_and_translate( | |
scale=(scale), translate=trans) | |
results = [] | |
for mesh in mesh_lst: | |
mesh.apply_transform(resize_matrix) | |
results.append(mesh) | |
return results | |
class SMPLX(): | |
def __init__(self): | |
REPO_ID = "Yuliang/SMPL" | |
self.smpl_verts_path = hf_hub_download(REPO_ID, filename='smpl_data/smpl_verts.npy', use_auth_token=os.environ['ICON']) | |
self.smplx_verts_path = hf_hub_download(REPO_ID, filename='smpl_data/smplx_verts.npy', use_auth_token=os.environ['ICON']) | |
self.faces_path = hf_hub_download(REPO_ID, filename='smpl_data/smplx_faces.npy', use_auth_token=os.environ['ICON']) | |
self.cmap_vert_path = hf_hub_download(REPO_ID, filename='smpl_data/smplx_cmap.npy', use_auth_token=os.environ['ICON']) | |
self.faces = np.load(self.faces_path) | |
self.verts = np.load(self.smplx_verts_path) | |
self.smpl_verts = np.load(self.smpl_verts_path) | |
self.model_dir = hf_hub_url(REPO_ID, filename='models') | |
self.tedra_dir = hf_hub_url(REPO_ID, filename='tedra_data') | |
def get_smpl_mat(self, vert_ids): | |
mat = torch.as_tensor(np.load(self.cmap_vert_path)).float() | |
return mat[vert_ids, :] | |
def smpl2smplx(self, vert_ids=None): | |
"""convert vert_ids in smpl to vert_ids in smplx | |
Args: | |
vert_ids ([int.array]): [n, knn_num] | |
""" | |
smplx_tree = cKDTree(self.verts, leafsize=1) | |
_, ind = smplx_tree.query(self.smpl_verts, k=1) # ind: [smpl_num, 1] | |
if vert_ids is not None: | |
smplx_vert_ids = ind[vert_ids] | |
else: | |
smplx_vert_ids = ind | |
return smplx_vert_ids | |
def smplx2smpl(self, vert_ids=None): | |
"""convert vert_ids in smplx to vert_ids in smpl | |
Args: | |
vert_ids ([int.array]): [n, knn_num] | |
""" | |
smpl_tree = cKDTree(self.smpl_verts, leafsize=1) | |
_, ind = smpl_tree.query(self.verts, k=1) # ind: [smplx_num, 1] | |
if vert_ids is not None: | |
smpl_vert_ids = ind[vert_ids] | |
else: | |
smpl_vert_ids = ind | |
return smpl_vert_ids | |