Spaces:
Sleeping
Sleeping
File size: 6,343 Bytes
0c9da96 a05049f 0c9da96 a05049f 0c9da96 a05049f 0c9da96 a05049f 0c9da96 a05049f 0c9da96 a05049f 0c9da96 a05049f 0c9da96 a05049f 0c9da96 a05049f 0c9da96 12d56d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
import torch
from transformers import ViTForImageClassification, ViTImageProcessor
import matplotlib.pyplot as plt
import gradio as gr
import plotly.graph_objects as go
import torch
import numpy as np
from PIL import Image
model_name = "./best_model"
processor = ViTImageProcessor.from_pretrained(model_name)
labels = ['Acne or Rosacea', 'Actinic Keratosis Basal Cell Carcinoma and other Malignant Lesions', 'Atopic Dermatitis', 'Bullous Disease', 'Cellulitis Impetigo and other Bacterial Infections', 'Contact Dermatitis', 'Eczema', 'Exanthems and Drug Eruptions', 'Hair Loss Photos Alopecia and other Hair Diseases', 'Herpes HPV and other STDs', 'Light Diseases and Disorders of Pigmentation', 'Lupus and other Connective Tissue diseases', 'Melanoma Skin Cancer Nevi and Moles', 'Nail Fungus and other Nail Disease', 'Psoriasis pictures Lichen Planus and related diseases', 'Scabies Lyme Disease and other Infestations and Bites', 'Seborrheic Keratoses and other Benign Tumors', 'Systemic Disease', 'Tinea Ringworm Candidiasis and other Fungal Infections', 'Urticaria Hives', 'Vascular Tumors', 'Vasculitis', 'Warts Molluscum and other Viral Infections']
class ViTForImageClassificationWithAttention(ViTForImageClassification):
def forward(self, pixel_values):
outputs = super().forward(pixel_values)
attention = self.vit.encoder.layers[0].attention.attention_weights
return outputs, attention
model = ViTForImageClassificationWithAttention.from_pretrained(model_name)
class ViTForImageClassificationWithAttention(ViTForImageClassification):
def forward(self, pixel_values, output_attentions=True):
outputs = super().forward(pixel_values, output_attentions=output_attentions)
attention = outputs.attentions
return outputs, attention
model = ViTForImageClassificationWithAttention.from_pretrained(model_name,attn_implementation="eager")
i_count = 0
def classify_image(image):
model_name = "best_model.pth"
model.load_state_dict(torch.load(model_name))
inputs = processor(images=image, return_tensors="pt")
outputs, attention = model(**inputs, output_attentions=True)
logits = outputs.logits
probs = torch.nn.functional.softmax(logits, dim=1)
top_k_probs, top_k_indices = torch.topk(probs, k=5) # show top 5 predicted labels
predicted_class_idx = torch.argmax(logits)
predicted_class_label = labels[predicted_class_idx]
top_k_labels = [labels[idx] for idx in top_k_indices[0]]
top_k_label_probs = [(label, prob.item()) for label, prob in zip(top_k_labels, top_k_probs[0])]
# Create a bar chart
fig_bar = go.Figure(
data=[go.Bar(x=[label for label, prob in top_k_label_probs], y=[prob for label, prob in top_k_label_probs])])
fig_bar.update_layout(title="Top 5 Predicted Labels with Probabilities", xaxis_title="Label",
yaxis_title="Probability")
# Create a heatmap
if attention is not None:
fig_heatmap = go.Figure(
data=[go.Heatmap(z=attention[0][0, 0, :, :].detach().numpy(), colorscale='Viridis', showscale=False)])
fig_heatmap.update_layout(title="Attention Heatmap")
else:
fig_heatmap = go.Figure() # Return an empty plot
# Overlay the attention heatmap on the input image
if attention is not None:
img_array = np.array(image)
heatmap = np.array(attention[0][0, 0, :, :].detach().numpy())
heatmap = np.resize(heatmap, (img_array.shape[0], img_array.shape[1]))
heatmap = heatmap / heatmap.max() * 255 # Normalize heatmap to [0, 255]
heatmap = heatmap.astype(np.uint8)
heatmap_color = np.zeros((img_array.shape[0], img_array.shape[1], 3), dtype=np.uint8)
heatmap_color[:, :, 0] = heatmap # Red channel
heatmap_color[:, :, 1] = heatmap # Green channel
heatmap_color[:, :, 2] = 0 # Blue channel
attention_overlay = (img_array * 0.5 + heatmap_color * 0.5).astype(np.uint8)
attention_overlay = Image.fromarray(attention_overlay)
attention_overlay.save("attention_overlay.png")
attention_overlay = gr.Image("attention_overlay.png")
else:
attention_overlay = gr.Image() # Return an empty image
# Return the predicted label, the bar chart, and the heatmap
return predicted_class_label, fig_bar, fig_heatmap, attention_overlay
def update_model(image, label):
# Convert the label to an integer
label_idx = labels.index(label)
labels_tensor = torch.tensor([label_idx])
inputs = processor(images=image, return_tensors="pt")
loss_fn = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
# Zero the gradients
optimizer.zero_grad()
# Forward pass
outputs, attention = model(**inputs)
loss = loss_fn(outputs.logits, labels_tensor)
# Backward pass
loss.backward()
# Update the model parameters
optimizer.step()
# Save the updated model
torch.save(model.state_dict(), "best_model.pth")
return "Model updated successfully"
demo = gr.TabbedInterface(
[
gr.Interface(
fn=classify_image,
inputs=[
gr.Image(type="pil", label="Image")
],
outputs=[
gr.Label(label="Predicted Class Label"),
gr.Plot(label="Top 5 Predicted Labels with Probabilities")
],
title="Dermatological Image Classification Demo",
description="Upload an image to see the predicted class label, top 5 predicted labels with probabilities, and attention heatmap",
allow_flagging=False
),
gr.Interface(
fn=update_model,
inputs=[
gr.Image(type="pil", label="Image"),
gr.Radio(
choices=labels,
type="value",
label="Label",
value=labels[0]
)
],
outputs=[
gr.Textbox(label="Model Update Status")
],
title="Train Model",
description="Upload an image and label to update the model",
allow_flagging=False
)
],
title="Dermatological Image Classification and Training"
)
if __name__ == "__main__":
demo.launch()
|